Open Access
Issue
Med Sci (Paris)
Volume 40, Number 2, Février 2024
Page(s) 176 - 185
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023221
Published online 27 February 2024
  1. Ciehanover A, Hod Y, Hershko AA heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 1978 ; 81(1): 100–105. [Google Scholar]
  2. Bard JAM, Goodall EA, Greene ERet al. Structure and Function of the 26S Proteasome. Annu Rev Biochem 2018 ; 87 : 697–724. [CrossRef] [PubMed] [Google Scholar]
  3. Agarwal AK, Xing C, Demartino GNet al. PSMB8 Encoding the β5i Proteasome Subunit Is Mutated in Joint Contractures, Muscle Atrophy, Microcytic Anemia, and Panniculitis-Induced Lipodystrophy Syndrome. Am J Hum Genet 2010 ; 87 : 866–872. [CrossRef] [PubMed] [Google Scholar]
  4. Ebstein F, Poli Harlowe MC, Studencka-Turski M, et al. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019 ; 10 : 2756. [CrossRef] [PubMed] [Google Scholar]
  5. Küry S, Besnard T, Ebstein F, et al. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 2017 ; 100 : 352–363. [CrossRef] [PubMed] [Google Scholar]
  6. Ebstein F, Küry S, Most V, et al. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med 2023; 15 : eabo3189. [CrossRef] [PubMed] [Google Scholar]
  7. Kröll-Hermi A, Ebstein F, Stoetzel C, et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. EMBO Mol Med 2020; 12 : e11861. [CrossRef] [PubMed] [Google Scholar]
  8. Ansar M, Ebstein F, Özkoç H, et al. Biallelic variants in PSMB1 encoding the proteasome subunit β6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum Mol Genet 2021; 29 : 1132–43. [Google Scholar]
  9. Aharoni S, Proskorovski-Ohayon R, Krishnan RK, et al. PSMC1 variant causes a novel neurological syndrome. Clin Genet 2022; 102 : 324–32. [CrossRef] [PubMed] [Google Scholar]
  10. Eno CC, Graakjaer J, Svaneby D, et al. 14q32.11 microdeletion including CALM1, TTC7B, PSMC1, and RPS6KA5 : A new potential cause of developmental and language delay in three unrelated patients. Am J Med Genet A 2021; 185 : 1519–24. [CrossRef] [PubMed] [Google Scholar]
  11. Brehm A, Liu Y, Sheikh A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 2015 ; 125 : 4196–4211. [CrossRef] [PubMed] [Google Scholar]
  12. Poli MC, Ebstein F, Nicholas SK, et al. Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. Am J Hum Genet 2018 ; 102 : 1126–1142. [CrossRef] [PubMed] [Google Scholar]
  13. Ebstein F, Küry S, Most V, et al. De novo variants in the PSMC3 proteasome AAA-ATPase subunit gene cause neurodevelopmental disorders associated with type I interferonopathies. medRxiv 2021; 2021.12.07.21 266 342. [Google Scholar]
  14. Isidor B, Ebstein F, Hurst A, et al. Stankiewicz-Isidor syndrome : expanding the clinical and molecular phenotype. Genet Med 2022; 24 : 179–91. [CrossRef] [PubMed] [Google Scholar]
  15. Yewdell JW, Nicchitta C V. The DRiP hypothesis decennial : support, controversy, refinement and extension. Trends Immunol 2006 ; 27 : 368–373. [CrossRef] [PubMed] [Google Scholar]
  16. Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol 2018 ; 6 : 128. [CrossRef] [PubMed] [Google Scholar]
  17. Feng Y, Yao Z, Klionsky DJ. How to control self-digestion : transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 2015 ; 25 : 354–363. [CrossRef] [PubMed] [Google Scholar]
  18. Wu M, Chen P, Liu F, et al. ONX0912, a selective oral proteasome inhibitor, triggering mitochondrial apoptosis and mitophagy in liver cancer. Biochem Biophys Res Commun 2021; 547 : 102–10. [CrossRef] [PubMed] [Google Scholar]
  19. Steffen J, Seeger M, Koch A, et al. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 2010 ; 40 : 147–158. [CrossRef] [PubMed] [Google Scholar]
  20. Sha Z, Schnell HM, Ruoff K, et al. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J Cell Biol 2018 ; 217(1): 757–776. [Google Scholar]
  21. Widenmaier SB, Snyder NA, Nguyen TB, et al. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis. Cell 2017 ; 171(1094–1109): e15. [CrossRef] [PubMed] [Google Scholar]
  22. Hetz C.. The unfolded protein response : controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012 ; 13 : 89–102. [CrossRef] [PubMed] [Google Scholar]
  23. Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11 : 1 422. [Google Scholar]
  24. Davidson S, Yu CH, Steiner A, et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol 2022; 7 : eabi6763. [CrossRef] [PubMed] [Google Scholar]
  25. Waugh KA, Araya P, Pandey A, et al. Mass Cytometry Reveals Global Immune Remodeling with Multi-lineage Hypersensitivity to Type I Interferon in Down Syndrome. Cell Rep 2019 ; 29(1893–908): e4. [CrossRef] [PubMed] [Google Scholar]
  26. Hewings DS, Flygare JA, Wertz IE, et al. Activity-based probes for the multicatalytic proteasome. FEBS J 2017 ; 284 : 1540–1554. [CrossRef] [PubMed] [Google Scholar]
  27. Moudio S, Rodin F, Jamal Albargothy N, et al. Exposure of α-Synuclein Aggregates to Organotypic Slice Cultures Recapitulates Key Molecular Features of Parkinson’s Disease. Front Neurol 2022; 13 : 826 102. [CrossRef] [Google Scholar]
  28. Orak B, Ngoumou G, Ebstein F, et al. SIGLEC1 (CD169) as a potential diagnostical screening marker for monogenic interferonopathies. Pediatr Allergy Immunol 2021; 32 : 621–5. [CrossRef] [PubMed] [Google Scholar]
  29. Crow YJ, Shetty J, Livingston JH. Treatments in Aicardi-Goutières syndrome. Dev Med Child Neurol 2020; 62 : 42–7. [CrossRef] [PubMed] [Google Scholar]
  30. Cattalini M, Galli J, Zunica F, et al. Case Report : The JAK-Inhibitor Ruxolitinib Use in Aicardi-Goutieres Syndrome Due to ADAR1 Mutation. Front Pediatr 2021; 9 : 725 868. [CrossRef] [Google Scholar]
  31. Vanderver A, Adang L, Gavazzi F, et al. Janus Kinase Inhibition in the Aicardi-Goutières Syndrome. N Engl J Med 2020; 383 : 986–9. [CrossRef] [PubMed] [Google Scholar]
  32. Casas-Alba D, Darling A, Caballero E, et al. Efficacy of baricitinib on chronic pericardial effusion in a patient with Aicardi-Goutières syndrome. Rheumatology (United Kingdom) 2022; 61 : e87–9. [CrossRef] [PubMed] [Google Scholar]
  33. Myeku N, Clelland CL, Emrani S, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 2016 ; 22 : 46–53. [CrossRef] [PubMed] [Google Scholar]
  34. VerPlank JJS, Tyrkalska SD, Tyrkalska SD, et al. CGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proc Natl Acad Sci U S A 2020; 117 : 14 220–30. [Google Scholar]
  35. Leestemaker Y, de Jong A, Witting KF, et al. Proteasome Activation by Small Molecules. Cell Chem Biol 2017 ; 24(725–36): e7. [CrossRef] [PubMed] [Google Scholar]
  36. Huang ZN, Chen JM, Huang LC, et al. Inhibition of p38 Mitogen-Activated Protein Kinase Ameliorates HAP40 Depletion-Induced Toxicity and Proteasomal Defect in Huntington’s Disease Model. Mol Neurobiol 2021; 58 : 2 704–23. [Google Scholar]
  37. Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010 ; 467 : 179–184. [CrossRef] [PubMed] [Google Scholar]
  38. Jones CL, Njomen E, Sjögren B, et al. Small Molecule Enhancement of 20S Proteasome Activity Targets Intrinsically Disordered Proteins. ACS Chem Biol 2017 ; 12(2): 240–247. [Google Scholar]
  39. Trader DJ, Simanski S, Dickson P, et al. Establishment of a suite of assays that support the discovery of proteasome stimulators. Biochim Biophys Acta Gen Subj 2017 ; 1861 : 892–899. [CrossRef] [PubMed] [Google Scholar]
  40. Banerjee S, Ji C, Mayfield JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A 2018 ; 115(8): 155–160. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.