Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 2, Février 2024
|
|
---|---|---|
Page(s) | 161 - 166 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023219 | |
Published online | 27 February 2024 |
- Linz B, Ivanov YV, Preston A, et al. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 2016 ; 17 : 767. [CrossRef] [PubMed] [Google Scholar]
- Choi YH, Campbell H, Amirthalingam G, et al. Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Med 2016 ; 14 : 121. [CrossRef] [PubMed] [Google Scholar]
- Guiso N. Impact de la vaccination sur l’épidémiologie des maladies infectieuses : exemple de la coqueluche. Med Sci (Paris) 2007 ; 23 : 399–403. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Shapiro-Shapin CG. Pearl Kendrick, Grace Eldering, and the Pertussis Vaccine. Emerg Infect Dis 2010 ; 16 : 1273–1278. [CrossRef] [PubMed] [Google Scholar]
- Miller CL, Pollock TM, Clewer ADE. Whooping-cough vaccination : An assessment. Lancet 1974 ; 304 : 510–513. [CrossRef] [Google Scholar]
- Cody CL, Baraff LJ, Cherry JD, et al. Nature and Rates of Adverse Reactions Associated with DTP and DT Immunizations in Infants and Children. Pediatrics 1981 ; 68 : 650–660. [CrossRef] [PubMed] [Google Scholar]
- Strom J. Further experience of reactions, especially of a cerebral nature, in conjunction with triple vaccination : a study based on vaccinations in Sweden 1959–65. BMJ 1967 ; 4 : 320–323. [CrossRef] [PubMed] [Google Scholar]
- Boulesteix J. Tolérance et efficacité du vaccin anti-coquelucheux entier. Médecine et Maladies Infectieuses 1995 ; 25 : 1299–1304. [CrossRef] [Google Scholar]
- Trollfors B. Bordetella Pertussis Whole Cell Vaccines-Efficacy and Toxicity. Acta Paediatrica 1984 ; 73 : 417–425. [CrossRef] [Google Scholar]
- Nakayama T. Vaccine chronicle in Japan. J Infect Chemother 2013 ; 19 : 787–798. [CrossRef] [PubMed] [Google Scholar]
- Barkoff A-M, Mertsola J, Pierard D, et al. Pertactin-deficient Bordetella pertussis isolates : evidence of increased circulation in Europe, 1998 to 2015. Eurosurveillance 2019; 24 : 1700832. [Google Scholar]
- Belchior E, Guillot S, Poujol I, et al. Comparison of whole-cell versus acellular pertussis vaccine effectiveness in school clusters of pertussis, France, 2013. Médecine et Maladies Infectieuses 2020; 50 : 617–9. [CrossRef] [Google Scholar]
- Ministère de la Santé et de la Prévention. Calendrier des vaccinations et recommandations vaccinales 2023. Paris, 2023. https://sante.gouv.fr/prevention-en-sante/preserver-sa-sante/vaccination/calendrier-vaccinal. [Google Scholar]
- Lefrancq N, Bouchez V, Fernandes N, et al. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14 : eabn3253. [CrossRef] [PubMed] [Google Scholar]
- Brandal LT, Vestrheim DF, Bruvik T et al. Evolution of Bordetella pertussis in the acellular vaccine era in Norway, to 2019. Eur J Clin Microbiol Infect Dis 1996 ; 2022(41): 913–924. [Google Scholar]
- Lesne E, Cavell BE, Freire-Martin I, et al. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11 : 2108. [CrossRef] [PubMed] [Google Scholar]
- Jayasundara D, Lee E, Octavia S, et al. Emergence of pertactin-deficient pertussis strains in Australia can be explained by models of vaccine escape. Epidemics 2020; 31 : 100 388. [Google Scholar]
- Etskovitz H, Anastasio N, Green E, et al. Role of Evolutionary Selection Acting on Vaccine Antigens in the Re-Emergence of Bordetella Pertussis. Diseases 2019 ; 7 : 35. [CrossRef] [PubMed] [Google Scholar]
- Zomer A, Otsuka N, Hiramatsu Y, et al. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines. Microb Genom 2018 ; 4 : e000180. [PubMed] [Google Scholar]
- Bart MJ, Harris SR, Advani A, et al. Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination. mBio 2014; 5 : e01074–14. [PubMed] [Google Scholar]
- Octavia S, Sintchenko V, Gilbert GL, et al. Newly Emerging Clones of Bordetella pertussis Carrying prn2 and ptxP3 Alleles Implicated in Australian Pertussis Epidemic in 2008–2010. J Infect Dis 2012 ; 205 : 1220–1224. [CrossRef] [PubMed] [Google Scholar]
- Borisova O, Kombarova SY, Zakharova NS, et al. Antigenic Divergence between Bordetella pertussis Clinical Isolates from Moscow, Russia, and Vaccine Strains. Clin Vaccine Immunol 2007 ; 14 : 234–238. [CrossRef] [PubMed] [Google Scholar]
- Fry NK, Neal S, Harrison TG, et al. Genotypic Variation in the Bordetella pertussis Virulence Factors Pertactin and Pertussis Toxin in Historical and Recent Clinical Isolates in the United Kingdom. Infect Immun 2001 ; 69 : 5520–5528. [CrossRef] [PubMed] [Google Scholar]
- Hallander HO, Advani A, Donnelly D, et al. Shifts of Bordetella pertussis Variants in Sweden from 1970 to 2003, during Three Periods Marked by Different Vaccination Programs. J Clin Microbiol 2005 ; 43 : 2856–2865. [CrossRef] [PubMed] [Google Scholar]
- Elomaa A, Advani A, Donnelly D, et al. Strain Variation among Bordetella pertussis Isolates in Finland, Where the Whole-Cell Pertussis Vaccine Has Been Used for 50 Years. J Clin Microbiol 2005 ; 43 : 3681–3687. [CrossRef] [PubMed] [Google Scholar]
- Petersen RF, Dalby T, Dragsted DM, et al. Temporal Trends in Bordetella pertussis Populations, Denmark, 1949–2010. Emerg Infect. Dis 2012 ; 18 : 767–774. [Google Scholar]
- Scanlon K, Skerry C, Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis In: Fedele G, Ausiello CM editors. Pertussis Infection and Vaccines. Advances in Experimental Medicine and Biology. Cham: Springer International Publishing, 2019 : 35–51. [CrossRef] [PubMed] [Google Scholar]
- Loconsole D, De Robertis AL, Morea A, et al. Resurgence of pertussis and emergence of the ptxP3 toxin promoter allele in South Italy. Pediat Infect Dis J 2018 ; 37 : e126–e131. [CrossRef] [PubMed] [Google Scholar]
- Dakic G, Kallonen T, Elomaa A, et al. Bordetella pertussis vaccine strains and circulating isolates in Serbia. Vaccine 2010 ; 28 : 1188–1192. [CrossRef] [PubMed] [Google Scholar]
- Carriquiriborde F, Regidor V, Aispuro PM, et al. Rare Detection of Bordetella pertussis Pertactin-Deficient Strains in Argentina. Emerg Infect Dis 2019 ; 25 : 2048–2054. [CrossRef] [PubMed] [Google Scholar]
- Leite D, Camargo CH, Kashino SS, et al. Prevalence and characterization of pertactin deficient Bordetella pertussis strains in Brazil, a whole-cell vaccine country. Vaccine : X 2021; 8 : 100103. [CrossRef] [Google Scholar]
- Kurova N, Njamkepo E, Brun D, et al. Monitoring of Bordetella isolates circulating in Saint Petersburg, Russia between 2001 and 2009. Res Microbiol 2010 ; 161 : 810–815. [CrossRef] [PubMed] [Google Scholar]
- Polak M, Zasada AA, Mosiej E, et al. Pertactin-deficient Bordetella pertussis isolates in Poland — a country with whole-cell pertussis primary vaccination. Microbes Infect 2019 ; 21 : 170–175. [CrossRef] [PubMed] [Google Scholar]
- Lam C, Octavia S, Ricafort L, et al. Rapid Increase in Pertactin-deficient Bordetella pertussis Isolates. Australia. Emerg Infect Dis 2014 ; 20 : 626–633. [Google Scholar]
- Xu Z, Octavia S, Luu LDW, et al. Pertactin-Negative and Filamentous Hemagglutinin-Negative Bordetella pertussis, Australia, 2013–2017. Emerg Infect Dis 2019 ; 25 : 1196–1199. [CrossRef] [PubMed] [Google Scholar]
- Otsuka N, Han H-J, Toyoizumi-Ajisaka H, et al. Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS ONE 2012 ; 7 : e31985. [CrossRef] [PubMed] [Google Scholar]
- Hiramatsu Y, Miyaji Y, Otsuka N, et al. Significant Decrease in Pertactin-Deficient Bordetella pertussis Isolates. Japan. Emerg Infect Dis 2017 ; 23 : 699–701. [CrossRef] [PubMed] [Google Scholar]
- Ring N, Davies H, Morgan J, et al. Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough. Microb Genom 2022; 8 : 000756. [PubMed] [Google Scholar]
- Pawloski LC, Queenan AM, Cassiday PK, et al. Prevalence and Molecular Characterization of Pertactin-Deficient Bordetella pertussis in the United States. Clin Vaccine Immunol 2014 ; 21 : 119–125. [CrossRef] [PubMed] [Google Scholar]
- Tsang RSW, Shuel M, Cronin K, et al. The evolving nature of Bordetella pertussis in Ontario, Canada, 2009–2017: strains with shifting genotypes and pertactin deficiency. Can J Microbiol 2019 ; 65 : 823–830. [CrossRef] [PubMed] [Google Scholar]
- Mooi FR, van Loo IHM, van Gent M, et al. Bordetella pertussis Strains with Increased Toxin Production Associated with Pertussis Resurgence. Emerg Infect Dis 2009 ; 15 : 1206–1213. [CrossRef] [PubMed] [Google Scholar]
- Advani A, Gustafsson L, Åhrén C, et al. Appearance of Fim3 and ptxP3-Bordetella pertussis strains, in two regions of Sweden with different vaccination programs. Vaccine 2011 ; 29 : 3438–3442. [CrossRef] [PubMed] [Google Scholar]
- Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 2014 ; 111 : 787–792. [CrossRef] [PubMed] [Google Scholar]
- Gandon S, Mackinnon MJ, Nee S, et al. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001 ; 414 : 751–756. [CrossRef] [PubMed] [Google Scholar]
- Van Valen L.A new evolutionary law. Evolutionary Theory 1973 ; 1 : 1–30. [Google Scholar]
- Domenech de Cellès M, Magpantay FMG, King AA, et al. The pertussis enigma : reconciling epidemiology, immunology and evolution. Proc R Soc B 2016; 283 : 20 152 309. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.