Open Access
Issue
Med Sci (Paris)
Volume 40, Number 2, Février 2024
Page(s) 154 - 160
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023218
Published online 27 February 2024
  1. Laal S, Sharma YD, Prasad HK, et al. Recombinant fusion protein identified by lepromatous sera mimics native Mycobacterium leprae in T-cell responses across the leprosy spectrum. Proc Natl Acad Sci USA 1991 ; 88 : 1054–1058. [CrossRef] [PubMed] [Google Scholar]
  2. Sela S, Thole JE, Ottenhoff TH, et al. Identification of Mycobacterium leprae antigens from a cosmid library : characterization of a 15-kilodalton antigen that is recognized by both the humoral and cellular immune systems in leprosy patients. Infect Immun 1991 ; 59 : 4117–4124. [CrossRef] [PubMed] [Google Scholar]
  3. Oftung F, Mustafa AS, Wiker HGExtensive sequence homology between the mycobacterium leprae LSR (12 kDa) antigen and its Mycobacterium tuberculosis counterpart. FEMS Immunol Med Microbiol 2000 ; 27 : 87–89. [CrossRef] [PubMed] [Google Scholar]
  4. Chen JM, German GJ, Alexander DC, et al. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 2006 ; 188 : 633–641. [CrossRef] [PubMed] [Google Scholar]
  5. Le Moigne V, Bernut A, Cortès M, et al. Lsr2 Is an Important Determinant of Intracellular Growth and Virulence in Mycobacterium abscessus. Front Microbiol 2019 ; 10 : 905. [CrossRef] [PubMed] [Google Scholar]
  6. Gehrke EJ, Zhang X, Pimentel-Elardo SM, et al. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. Elife 2019 ; 8 : e47691. [CrossRef] [PubMed] [Google Scholar]
  7. Wiechert J, Filipchyk A, Hünnefeld M, et al. Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model. mBio 2020; 11 : e02273–19. [CrossRef] [PubMed] [Google Scholar]
  8. Pfeifer E, Hünnefeld M, Popa O, et al. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019 ; 431 : 4670–4683. [CrossRef] [PubMed] [Google Scholar]
  9. Sharma V, Hardy A, Luthe T, et al. Phylogenetic Distribution of WhiB- and Lsr2-Type Regulators in Actinobacteriophage Genomes. Microbiol Spectr 2021; 9 : e0072721. [CrossRef] [PubMed] [Google Scholar]
  10. Singh S, Jenner PJ, Narayan NP, et al. Critical residues of the Mycobacterium leprae LSR recombinant protein discriminate clinical activity in erythema nodosum leprosum reactions. Infect Immun 1994 ; 62 : 5702–5705. [CrossRef] [PubMed] [Google Scholar]
  11. Saini C, Prasad HK, Rani R, et al. Lsr2 of Mycobacterium leprae and its synthetic peptides elicit restitution of T cell responses in erythema nodosum leprosum and reversal reactions in patients with lepromatous leprosy. Clin Vaccine Immunol 2013 ; 20 : 673–682. [CrossRef] [PubMed] [Google Scholar]
  12. Arora K, Whiteford DC, Lau-Bonilla D, et al. Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. J Bacteriol 2008 ; 190 : 4291–4300. [CrossRef] [PubMed] [Google Scholar]
  13. Kołodziej M, Trojanowski D, Bury K, et al. Lsr2, a nucleoid-associated protein influencing mycobacterial cell cycle. Sci Rep 2021; 11 : 2910. [CrossRef] [PubMed] [Google Scholar]
  14. Gutiérrez AV, Viljoen A, Ghigo E, et al. Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Front Microbiol 2018 ; 9 : 1145. [CrossRef] [PubMed] [Google Scholar]
  15. Kocíncová D, Singh AK, Beretti J-L, et al. Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb) 2008 ; 88 : 390–398. [CrossRef] [PubMed] [Google Scholar]
  16. Bartek IL, Woolhiser LK, Baughn AD, et al. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. mBio 2014; 5 : e01106–01114. [CrossRef] [PubMed] [Google Scholar]
  17. Sassetti CM, Boyd DH, Rubin EJGenes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003 ; 48 : 77–84. [CrossRef] [PubMed] [Google Scholar]
  18. Colangeli R, Helb D, Vilchèze C, et al. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 2007 ; 3 : e87. [CrossRef] [PubMed] [Google Scholar]
  19. Wong DK, Lee BY, Horwitz MA, et al. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 1999 ; 67 : 327–336. [CrossRef] [PubMed] [Google Scholar]
  20. Betts JC, Lukey PT, Robb LC, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002 ; 43 : 717–731. [CrossRef] [PubMed] [Google Scholar]
  21. Stewart GR, Wernisch L, Stabler R, et al. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology (Reading) 2002 ; 148 : 3129–3138. [CrossRef] [PubMed] [Google Scholar]
  22. Kołodziej M, Łebkowski T, Płocin’ ski P, et al. Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions. mSphere 2021; 6 : e00290–21. [PubMed] [Google Scholar]
  23. Dulberger CL, Guerrero-Bustamante CA, Owen SV, et al. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol 2023; 8 : 695–710. [CrossRef] [PubMed] [Google Scholar]
  24. Gordon BRG, Li Y, Wang L, et al. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2010 ; 107 : 5154–5159. [CrossRef] [PubMed] [Google Scholar]
  25. Dame RTThe role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 2005 ; 56 : 858–870. [CrossRef] [PubMed] [Google Scholar]
  26. Dame RT, Rashid F-ZM, Grainger DC. Chromosome organization in bacteria : mechanistic insights into genome structure and function. Nat Rev Genet 2020; 21 : 227–42. [CrossRef] [PubMed] [Google Scholar]
  27. Dillon SC, Dorman CJBacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 2010 ; 8 : 185–195. [CrossRef] [PubMed] [Google Scholar]
  28. Hołówka J, Zakrzewska-Czerwin’ska J. Nucleoid Associated Proteins : The Small Organizers That Help to Cope With Stress. Front Microbiol 2020; 11 : 590. [CrossRef] [PubMed] [Google Scholar]
  29. Rajapaksha N, Soldano A, Yao H, et al. Pseudomonas aeruginosa Dps (PA0962) Functions in H2O2 Mediated Oxidative Stress Defense and Exhibits In Vitro DNA Cleaving Activity. Int J Mol Sci 2023; 24 : 4669. [CrossRef] [PubMed] [Google Scholar]
  30. Marques MAM, Espinosa BJ, Xavier da Silveira EK, et al. Continued proteomic analysis of Mycobacterium leprae subcellular fractions. Proteomics 2004 ; 4 : 2942–2953. [CrossRef] [PubMed] [Google Scholar]
  31. Summers EL, Meindl K, Usón I, et al. The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS One 2012 ; 7 : e38542. [CrossRef] [PubMed] [Google Scholar]
  32. Qu Y, Lim CJ, Whang YR, et al. Mechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2. Nucleic Acids Res 2013 ; 41 : 5263–5272. [CrossRef] [PubMed] [Google Scholar]
  33. Chen JM, Ren H, Shaw JE, et al. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res 2008 ; 36 : 2123–2135. [CrossRef] [PubMed] [Google Scholar]
  34. Dorman CJH-NS : a universal regulator for a dynamic genome. Nat Rev Microbiol 2004 ; 2 : 391–400. [CrossRef] [PubMed] [Google Scholar]
  35. Gordon BRG, Imperial R, Wang L, et al. Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol 2008 ; 190 : 7052–7059. [CrossRef] [PubMed] [Google Scholar]
  36. Navarre WW, McClelland M, Libby SJ, et al. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007 ; 21 : 1456–1471. [CrossRef] [PubMed] [Google Scholar]
  37. Gordon BRG, Li Y, Cote A, et al. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc Natl Acad Sci USA 2011 ; 108 : 10690–10695. [CrossRef] [PubMed] [Google Scholar]
  38. Qin L, Erkelens AM, Ben Bdira F, et al. The architects of bacterial DNA bridges : a structurally and functionally conserved family of proteins. Open Biol 2019 ; 9 : 190223. [CrossRef] [PubMed] [Google Scholar]
  39. Dorman CJ. Function of nucleoid-associated proteins in chromosome structuring and transcriptional regulation. J Mol Microbiol Biotechnol 2014 ; 24 : 316–331. [PubMed] [Google Scholar]
  40. Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12 : 182–218. [CrossRef] [PubMed] [Google Scholar]
  41. Kriel NL, Gallant J, van Wyk N, et al. Mycobacterial nucleoid associated proteins : An added dimension in gene regulation. Tuberculosis (Edinb) 2018 ; 108 : 169–177. [CrossRef] [PubMed] [Google Scholar]
  42. Liu J, Gordon BRGTargeting the global regulator Lsr2 as a novel approach for anti-tuberculosis drug development. Expert Rev Anti Infect Ther 2012 ; 10 : 1049–1053. [CrossRef] [PubMed] [Google Scholar]
  43. Kotlajich MV, Hron DR, Boudreau BA, et al. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 2015 ; 4 : e04970. [CrossRef] [PubMed] [Google Scholar]
  44. Boudreau BA, Hron DR, Qin L, et al. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018 ; 46 : 5525–5546. [CrossRef] [PubMed] [Google Scholar]
  45. Wade JT, Grainger DCWaking the neighbours : disruption of H-NS repression by overlapping transcription. Mol Microbiol 2018 ; 108 : 221–225. [CrossRef] [PubMed] [Google Scholar]
  46. Singh SS, Singh N, Bonocora RP, et al. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev 2014 ; 28 : 214–219. [CrossRef] [PubMed] [Google Scholar]
  47. Peters JM, Mooney RA, Grass JA, et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 2012 ; 26 : 2621–2633. [CrossRef] [PubMed] [Google Scholar]
  48. Alqaseer K, Turapov O, Barthe P, et al. Protein kinase B controls Mycobacterium tuberculosis growth via phosphorylation of the transcriptional regulator Lsr2 at threonine 112. Mol Microbiol 2019 ; 112 : 1847–1862. [CrossRef] [PubMed] [Google Scholar]
  49. Turapov O, Forti F, Kadhim B, et al. Two Faces of CwlM, an Essential PknB Substrate, in Mycobacterium tuberculosis. Cell Reports 2018 ; 25 : 57. [CrossRef] [PubMed] [Google Scholar]
  50. Datta C, Jha RK, Ahmed W, et al. Physical and functional interaction between nucleoid-associated proteins HU and Lsr2 of Mycobacterium tuberculosis : altered DNA binding and gene regulation. Mol Microbiol 2019 ; 111 : 981–994. [CrossRef] [PubMed] [Google Scholar]
  51. Pinault L, Han J-S, Kang C-M, et al. Zafirlukast inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013 ; 57 : 2134–2140. [CrossRef] [PubMed] [Google Scholar]
  52. Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, et al. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016 ; 6 : 13. [PubMed] [Google Scholar]
  53. Deng X, Li M, Pan X, et al. Fis Regulates Type III Secretion System by Influencing the Transcription of exsA in Pseudomonas aeruginosa Strain PA14. Front Microbiol 2017 ; 8 : 669. [PubMed] [Google Scholar]
  54. Leite B, Werle CH, Carmo CP do, et al. Integration host factor is important for biofilm formation by Salmonella enterica Enteritidis. Pathog Dis 2017; 75. doi : 10.1093/femspd/ftx074. [Google Scholar]
  55. Jurcisek JA, Brockman KL, Novotny LA, et al. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci USA 2017 ; 114 : E6632–E6641. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.