Open Access
Issue
Med Sci (Paris)
Volume 40, Number 1, Janvier 2024
La cavité orale et les dents au cœur de la santé
Page(s) 64 - 71
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023197
Published online 01 February 2024
  1. Moreau N, Boucher Y. Douleurs orofaciales. Encyclopédie Médico Chirurgicale 2020; 28–290-C-10. [Google Scholar]
  2. Kohlmann T. Epidemiology of orofacial pain. Schmerz 2002 ; 16 : 339–345. [CrossRef] [PubMed] [Google Scholar]
  3. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc 1993 ; 124 : 115–121. [CrossRef] [PubMed] [Google Scholar]
  4. Goulet J-P, Woda A. Orofacial Pain: Classification and Road Map to Clinical Phenotypes. In : Goulet J-P, Velly AM, editors. Orofacial Pain Biomarkers. Berlin, Heidelberg: Springer, 2017 : 3–20. [CrossRef] [Google Scholar]
  5. Moreau N, Boucher Y. A-t-on perdu la tête ? Plaidoyer pour l’étude et la prise en charge des douleurs orofaciales. Douleur analg 2022; 35 : 43–5. [CrossRef] [Google Scholar]
  6. Dallel R, Voisin D. Towards a pain treatment based on the identification of the pain-generating mechanisms?. Eur Neurol 2001 ; 45 : 126–132. [CrossRef] [PubMed] [Google Scholar]
  7. Dallel R, Villanueva L, Woda A, et al. Neurobiologie de la douleur trigéminale. Med Sci (Paris) 2003 ; 19 : 567–574. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Moreau N, Dieb W, Descroix V, et al. Topical Review: Potential Use of Botulinum Toxin in the Management of Painful Posttraumatic Trigeminal Neuropathy. J Oral Facial Pain Headache 2017 ; 31 : 7–18. [CrossRef] [PubMed] [Google Scholar]
  9. Vos BP, Strassman AM, Maciewicz RJ, Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci 1994 ; 14 : 2708–2723. [CrossRef] [PubMed] [Google Scholar]
  10. Bennett GJ, Xie YK, A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988 ; 33 : 87–107. [CrossRef] [PubMed] [Google Scholar]
  11. Imamura Y, Kawamoto H, Nakanishi O, Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Exp Brain Res 1997 ; 116 : 97–103. [CrossRef] [PubMed] [Google Scholar]
  12. Iwata K, Imai T, Tsuboi Y, et al. Alteration of medullary dorsal horn neuronal activity following inferior alveolar nerve transection in rats. J Neurophysiol 2001 ; 86 : 2868–2877. [CrossRef] [PubMed] [Google Scholar]
  13. Boucher Y, Carstens MI, Sawyer CM, et al. Capsaicin avoidance as a measure of chemical hyperalgesia in orofacial nerve injury models. Neurosci Lett 2013 ; 543 : 37–41. [CrossRef] [PubMed] [Google Scholar]
  14. Moreau N, Mauborgne A, Bourgoin S, et al. Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development. Pain 2016 ; 157 : 827–839. [CrossRef] [PubMed] [Google Scholar]
  15. Moreau N, Dieb W, Mauborgne A, et al. Hedgehog Pathway-Mediated Vascular Alterations Following Trigeminal Nerve Injury. J Dent Res 2017 ; 96 : 450–457. [CrossRef] [PubMed] [Google Scholar]
  16. Jacquin MF, Hess A, Yang G, et al. Organization of the infraorbital nerve in rat: a quantitative electron microscopic study. Brain Res 1984 ; 290 : 131–135. [CrossRef] [PubMed] [Google Scholar]
  17. Guilbaud G, Gautron M, Jazat F, et al. Time course of degeneration and regeneration of myelinated nerve fibres following chronic loose ligatures of the rat sciatic nerve: can nerve lesions be linked to the abnormal pain-related behaviours?. Pain 1993 ; 53 : 147–158. [CrossRef] [PubMed] [Google Scholar]
  18. Ko JS, Eddinger KA, Angert M, et al. Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia. Brain Behav Immun 2016 ; 56 : 378–389. [CrossRef] [PubMed] [Google Scholar]
  19. Latrémolière A, Mauborgne A, Masson J, et al. Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci 2008 ; 28 : 8489–8501. [CrossRef] [PubMed] [Google Scholar]
  20. Hargreaves KM, Orofacial pain. Pain 2011 ; 152 : S25–S32. [CrossRef] [PubMed] [Google Scholar]
  21. Benoliel R, Zadik Y, Eliav E, et al. Peripheral painful traumatic trigeminal neuropathy: clinical features in 91 cases and proposal of novel diagnostic criteria. J Orofac Pain 2012 ; 26 : 49–58. [PubMed] [Google Scholar]
  22. Megat S, Ray PR, Tavares-Ferreira D, et al. Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. J Neurosci 2019 ; 39 : 6829–6847. [CrossRef] [PubMed] [Google Scholar]
  23. Korczeniewska OA, Khan J, Eliav E, et al. Molecular mechanisms of painful traumatic trigeminal neuropathy-Evidence from animal research and clinical correlates. J Oral Pathol Med 2020; 49 : 580–9. [CrossRef] [PubMed] [Google Scholar]
  24. Tal M, Devor M, Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res 1992 ; 579 : 148–151. [CrossRef] [PubMed] [Google Scholar]
  25. Baad-Hansen L, Benoliel R, Neuropathic orofacial pain: Facts and fiction. Cephalalgia 2017 ; 37 : 670–679. [CrossRef] [PubMed] [Google Scholar]
  26. Xie W, Strong JA, Meij JTA, et al. Neuropathic pain: early spontaneous afferent activity is the trigger. Pain 2005 ; 116 : 243–256. [CrossRef] [PubMed] [Google Scholar]
  27. Baron R, Hans G, Dickenson AH, Peripheral input and its importance for central sensitization. Ann Neurol 2013 ; 74 : 630–636. [CrossRef] [PubMed] [Google Scholar]
  28. Sapienza ARéaux-Le Goazigo A, Rostène W, et al. [Chemokines and attraction of myeloid cells in peripheral neuropathic pains]. Biol Aujourdhui 2014 ; 208 : 31–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Moreau N, Mauborgne A, Couraud P-O, et al. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?. Mol Pain 2017 ; 13 : 1744806917727625. [CrossRef] [Google Scholar]
  30. Moreau N, Boucher Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int J Mol Sci 2020; 21 : 9115. [CrossRef] [PubMed] [Google Scholar]
  31. Yamada Y, Ohazama A, Maeda T, et al. The Sonic Hedgehog signaling pathway regulates inferior alveolar nerve regeneration. Neurosci Lett 2018 ; 671 : 114–119. [CrossRef] [PubMed] [Google Scholar]
  32. Boucher Y, Moreau N, Mauborgne A, et al. Lipopolysaccharide-mediated inflammatory priming potentiates painful post-traumatic trigeminal neuropathy. Physiol Behav 2018 ; 194 : 497–504. [CrossRef] [PubMed] [Google Scholar]
  33. Dieb W, Moreau N, Chemla I, et al. Neuropathic pain in the orofacial region: The role of pain history. A retrospective study. J Stomatol Oral Maxillofac Surg 2017 ; 118 : 147–150. [CrossRef] [PubMed] [Google Scholar]
  34. Latremoliere A, Woolf CJ, Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009 ; 10 : 895–926. [CrossRef] [PubMed] [Google Scholar]
  35. Miraucourt LS, Dallel R, Voisin DL, Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS ONE 2007 ; 2 : e1116. [Google Scholar]
  36. Peirs C, Bourgois N, Artola A, et al. Protein Kinase C γ Interneurons Mediate C-fiber-induced Orofacial Secondary Static Mechanical Allodynia, but Not C-fiber-induced Nociceptive Behavior. Anesthesiology 2016 ; 124 : 1136–1152. [CrossRef] [PubMed] [Google Scholar]
  37. Artola A, Voisin D, Dallel R. PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127 : 527–40. [CrossRef] [PubMed] [Google Scholar]
  38. El Khoueiry C, Alba-Delgado C, Antri M, et al. GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but Not Anatomical Specialization. Cells 2022; 11 : 1356. [CrossRef] [PubMed] [Google Scholar]
  39. Alba-Delgado C, Mountadem S, Mermet-Joret N, et al. 5-HT2A Receptor-Induced Morphological Reorganization of PKCγ-Expressing Interneurons Gates Inflammatory Mechanical Allodynia in Rat. J Neurosci 2018 ; 38 : 10489–10504. [CrossRef] [PubMed] [Google Scholar]
  40. Torsney C, MacDermott AB, Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006 ; 26 : 1833–1843. [CrossRef] [PubMed] [Google Scholar]
  41. Dauvergne C, Molet J, Reaux-Le Goazigo A, et al. Implication of the chemokine CCL2 in trigeminal nociception and traumatic neuropathic orofacial pain. Eur J Pain 2014 ; 18 : 360–375. [CrossRef] [PubMed] [Google Scholar]
  42. Molet J, Mauborgne A, Diallo M, et al. Microglial JAK/STAT3 pathway activity directly impacts astrocyte and spinal neuron characteristics. J Neurochem 2016 ; 136 : 133–147. [CrossRef] [PubMed] [Google Scholar]
  43. Miraucourt LS, Peirs C, Dallel R, et al. Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived D-serine. Pain 2011 ; 152 : 1340–1348. [CrossRef] [PubMed] [Google Scholar]
  44. Lefèvre Y, Amadio A, Vincent P, et al. Neuropathic pain depends upon D-serine co-activation of spinal NMDA receptors in rats. Neurosci Lett 2015 ; 603 : 42–47. [CrossRef] [PubMed] [Google Scholar]
  45. Olsen ML, Khakh BS, Skatchkov SN, et al. New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J Neurosci 2015 ; 35 : 13827–13835. [CrossRef] [PubMed] [Google Scholar]
  46. Boyer N, Dallel R, Artola A, et al. General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression. Pain 2014 ; 155 : 1196–1205. [CrossRef] [PubMed] [Google Scholar]
  47. Wei F, Guo W, Zou S, et al. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 2008 ; 28 : 10482–10495. [CrossRef] [PubMed] [Google Scholar]
  48. Eboli P, Stone JL, Aydin S, et al. Historical characterization of trigeminal neuralgia. Neurosurgery 2009; 64 : 1183–6; discussion 1186–7. [CrossRef] [PubMed] [Google Scholar]
  49. Bendtsen L, Zakrzewska JM, Heinskou TB, et al. Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia. Lancet Neurol 2020; 19 : 784–96. [CrossRef] [PubMed] [Google Scholar]
  50. Gualdani R, Gailly P, Yuan J-H, et al. A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Proc Natl Acad Sci U S A 2022; 119 : e2119630119. [CrossRef] [PubMed] [Google Scholar]
  51. Messlinger K, Russo AF, Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 2019 ; 39 : 1661–1674. [CrossRef] [PubMed] [Google Scholar]
  52. Komiya H, Shimizu K, Ishii K, et al. Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J Oral Sci 2018 ; 60 : 493–499. [CrossRef] [PubMed] [Google Scholar]
  53. Ji R-R, Strichartz G. Cell signaling and the genesis of neuropathic pain. Sci STKE 2004; 2004 : reE14. [PubMed] [Google Scholar]
  54. Korczeniewska OA, James MH, Eliav T, et al. Chemogenetic inhibition of trigeminal ganglion neurons attenuates behavioural and neural pain responses in a model of trigeminal neuropathic pain. Eur J Pain 2022; 26 : 634–47. [CrossRef] [PubMed] [Google Scholar]
  55. Toyama M, Kudo C, Mukai C, et al. Trigeminal nervous system sensitization by infraorbital nerve injury enhances responses in a migraine model. Cephalalgia 2017 ; 37 : 1317–1328. [CrossRef] [PubMed] [Google Scholar]
  56. Réaux-Le Goazigo A, Melik Parsadaniantz S, Baudouin C, et al. Douleur oculaire : du fondamental à la clinique. Douleurs : Évaluation - Diagnostic - Traitement 2022; 23 : 75–85. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.