Free Access
Issue
Med Sci (Paris)
Volume 40, Number 1, Janvier 2024
La cavité orale et les dents au cœur de la santé
Page(s) 57 - 63
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023196
Published online 01 February 2024
  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71 : 209–49. [CrossRef] [PubMed] [Google Scholar]
  2. Boffetta P, Hecht S, Gray Net al. Smokeless tobacco and cancer. Lancet Oncol 2008 ; 9 : 667–675. [CrossRef] [PubMed] [Google Scholar]
  3. Seoane J, Takkouche B, Varela-Centelles Pet al. Impact of delay in diagnosis on survival to head and neck carcinomas: a systematic review with meta-analysis. Clin Otolaryngol 2012 ; 37 : 99–106. [CrossRef] [PubMed] [Google Scholar]
  4. Patel SC, Carpenter WR, Tyree Set al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol 2011 ; 29 : 1488–1494. [CrossRef] [PubMed] [Google Scholar]
  5. Mneimneh WS, Xu B, Ghossein C, et al. Clinicopathologic Characteristics of Young Patients with Oral Squamous Cell Carcinoma. Head Neck Pathol 2021; 15 : 1099–108. [CrossRef] [PubMed] [Google Scholar]
  6. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer eds. Smokeless tobacco and some tobacco-specific N-nitrosamines. Lyon, France : Geneva : World Health Organization, International Agency for Research on Cancer; distributed by WHO Press, 2007 : 626 p. [Google Scholar]
  7. Hashibe M, Brennan P, Chuang Set al. Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiology, Biomarkers & Prevention 2009 ; 18 : 541–550. [CrossRef] [PubMed] [Google Scholar]
  8. Mello FW, Miguel AFP, Dutra KLet al. Prevalence of oral potentially malignant disorders: A systematic review and meta-analysis. J Oral Pathol Med 2018 ; 47 : 633–640. [CrossRef] [PubMed] [Google Scholar]
  9. Samson J, Fricain JC. Lésions de la muqueuse buccale. Paris : Information Dentaire, 2021; 157 p. [Google Scholar]
  10. Aghbari SMH, Abushouk AI, Attia Aet al. Malignant transformation of oral lichen planus and oral lichenoid lesions: A meta-analysis of 20095 patient data. Oral Oncol 2017 ; 68 : 92–102. [CrossRef] [PubMed] [Google Scholar]
  11. Chuang S-C, Jenab M, Heck JEet al. Diet and the risk of head and neck cancer: a pooled analysis in the INHANCE consortium. Cancer Causes Control 2012 ; 23 : 69–88. [CrossRef] [PubMed] [Google Scholar]
  12. Li Y-M, Peng J, Li L-Z. Coffee consumption associated with reduced risk of oral cancer: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016 ; 121 : 381–9.e1. [CrossRef] [PubMed] [Google Scholar]
  13. Wang W, Yang Y, Zhang W, et al. Association of tea consumption and the risk of oral cancer: a meta-analysis. Oral Oncol 2014 ; 50 : 276–281. [CrossRef] [PubMed] [Google Scholar]
  14. McKay JD, Truong T, Gaborieau V, et al. A Genome-Wide Association Study of Upper Aerodigestive Tract Cancers Conducted within the INHANCE Consortium. PLoS Genet 2011 ; 7 : e1001333. [Google Scholar]
  15. Katirachi SK, Grønlund MP, Jakobsen KK, et al. The Prevalence of HPV in Oral Cavity Squamous Cell Carcinoma. Viruses 2023; 15 : 451. [CrossRef] [PubMed] [Google Scholar]
  16. Perera M, Al-hebshi NN, Speicher DJ, et al. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. J Oral Microbiol 2016; 8 : 10.3402/jom.v8.32762. [CrossRef] [PubMed] [Google Scholar]
  17. Zeng X-T, Deng A-P, Li C, et al. Periodontal disease and risk of head and neck cancer: a meta-analysis of observational studies. PLoS One 2013 ; 8 : e79017. [Google Scholar]
  18. Rotundo LDB, Toporcov TN, Biazevic GH, et al. Are recurrent denture-related sores associated with the risk of oral cancer? A case control study. Rev Bras Epidemiol 2013 ; 16 : 705–715. [CrossRef] [PubMed] [Google Scholar]
  19. Seoane J, Takkouche B, Varela-Centelles P, et al. Impact of delay in diagnosis on survival to head and neck carcinomas: a systematic review with meta-analysis. Clin Otolaryngol 2012 ; 37 : 99–106. [CrossRef] [PubMed] [Google Scholar]
  20. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 ; 542 : 115–118. [Google Scholar]
  21. Jubair F, Al-Karadsheh O, Malamos D, et al. A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Dis 2022; 28 : 1123–30. [CrossRef] [PubMed] [Google Scholar]
  22. Fu Q, Chen Y, Li Z, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine 2020; 27 : 100558. [CrossRef] [PubMed] [Google Scholar]
  23. Warin K, Limprasert W, Suebnukarn S, et al. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. J Oral Pathol Med 2021; 50 : 911–8. [CrossRef] [PubMed] [Google Scholar]
  24. Khurshid Z, Zafar MS, Khan RS, et al. Role of Salivary Biomarkers in Oral Cancer Detection. Adv Clin Chem 2018 ; 86 : 23–70. [CrossRef] [PubMed] [Google Scholar]
  25. Adeoye J, Alade AA, Zhu W-Y, et al. Efficacy of hypermethylated DNA biomarkers in saliva and oral swabs for oral cancer diagnosis: Systematic review and meta-analysis. Oral Dis 2022; 28 : 541–58. [CrossRef] [PubMed] [Google Scholar]
  26. Pillai J, Chincholkar T, Dixit R, et al. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19 : 315. [CrossRef] [PubMed] [Google Scholar]
  27. Parmar A, Macluskey M, Mc Goldrick N, et al. Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane Database Syst Rev 2021; 12 : CD006386. [PubMed] [Google Scholar]
  28. Cohen EEW, Bell RB, Bifulco CB, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 2019 ; 7 : 184. [CrossRef] [PubMed] [Google Scholar]
  29. Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019 ; 394 : 1915–1928. [CrossRef] [PubMed] [Google Scholar]
  30. Duhen R, Ballesteros-Merino C, Frye AK, et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun 2021; 12 : 1047. [CrossRef] [PubMed] [Google Scholar]
  31. Wang H, Mao L, Zhang T, et al. Altered expression of TIM-3, LAG-3, IDO, PD-L1, and CTLA-4 during nimotuzumab therapy correlates with responses and prognosis of oral squamous cell carcinoma patients. J Oral Pathol Med 2019 ; 48 : 669–676. [CrossRef] [PubMed] [Google Scholar]
  32. Sun X-S, Tao Y, Le Tourneau C, et al. Debio 1143 and high-dose cisplatin chemoradiotherapy in high-risk locoregionally advanced squamous cell carcinoma of the head and neck: a double-blind, multicentre, randomised, phase 2 study. Lancet Oncol 2020; 21 : 1173–87. [CrossRef] [PubMed] [Google Scholar]
  33. Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 2011 ; 29 : 610–618. [CrossRef] [PubMed] [Google Scholar]
  34. Distel LV, Fickenscher R, Dietel K, et al. Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: Prognostic impact may depend on type of treatment and stage of disease. Oral Oncology 2009 ; 45 : e167–e174. [CrossRef] [PubMed] [Google Scholar]
  35. Lee S, Kim DW, Kwon S, et al. Prognostic value of systemic inflammatory markers for oral cancer patients based on the 8th edition of AJCC staging system. Sci Rep 2020; 10 : 12111. [CrossRef] [PubMed] [Google Scholar]
  36. Gaur P, Qadir GA, Upadhyay S, et al. Skewed immunological balance between Th17 (CD4+IL17A+) and Treg (CD4+CD25+FOXP3+) cells in human oral squamous cell carcinoma. Cell Oncol 2012 ; 35 : 335–343. [CrossRef] [PubMed] [Google Scholar]
  37. Gaur P, Shukla NK, Das SN. Phenotypic and Functional Characteristics of Th17 (CD4 + IL17A + ) Cells in Human Oral Squamous Cell Carcinoma and Its Clinical Relevance. Immunol Invest 2017 ; 46 : 689–702. [CrossRef] [PubMed] [Google Scholar]
  38. Desrichard A, Kuo F, Chowell D, et al. Tobacco Smoking-Associated Alterations in the Immune Microenvironment of Squamous Cell Carcinomas. J Nat Cancer Inst 2018 ; 110 : 1386–1392. [CrossRef] [PubMed] [Google Scholar]
  39. Iglesia JV de la, Slebos RJC, Martin-Gomez L, et al. Effects of Tobacco Smoking on the Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2020; 26 : 1474–85. [CrossRef] [PubMed] [Google Scholar]
  40. Barbieri S, Schuch LF, Cascaes AM, et al. Does smoking habit affect dendritic cell expression in oral squamous cell carcinoma? Braz oral res 2022; 36 : e044. [CrossRef] [PubMed] [Google Scholar]
  41. Rochefort J, Karagiannidis I, Baillou C, et al. Defining biomarkers in oral cancer according to smoking and drinking status. Front Oncol 2022; 12 : 1068979. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.