Free Access
Issue
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
Page(s) 22 - 27
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2023136
Published online 17 November 2023
  1. Hu T, Chitnis N, Monos D, et al. Next-generation sequencing technologies: An overview. Hum Immunol 2021; 82 : 801–11. [CrossRef] [PubMed] [Google Scholar]
  2. Gorokhova S, Biancalana V, Lévy N, et al. Clinical massively parallel sequencing for the diagnosis of myopathies. Rev Neurol (Paris) 2015 ; 171 : 558–571. [CrossRef] [PubMed] [Google Scholar]
  3. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet 2020; 21 : 597–614. [CrossRef] [PubMed] [Google Scholar]
  4. Mehrmohamadi M, Sepehri MH, Nazer N, et al. A comparative overview of epigenomic profiling methods. Front Cell Dev Biol 2021; 9 : 714687. [CrossRef] [PubMed] [Google Scholar]
  5. Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci 2021; 13 : 36. [CrossRef] [PubMed] [Google Scholar]
  6. Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018 ; 360 : 176–182. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  7. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016 ; 537 : 347–355. [CrossRef] [PubMed] [Google Scholar]
  8. Smith LM, Agar JN, Chamot-Rooke J et al. The human proteoform project: Defining the human proteome. Sci Adv 2021; 46 : eabk0734. [CrossRef] [PubMed] [Google Scholar]
  9. Rozanova S, Barkovits K, Nikolov M et al. Quantitative mass spectrometry-based proteomics: An overview. Methods Mol Biol 2021; 2228 : 85–116. [CrossRef] [PubMed] [Google Scholar]
  10. Aderemi AV, Ayeleso AO, Oyedapo OO, et al. Metabolomics: A scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases. Metabolites 2021; 11 : 418. [CrossRef] [PubMed] [Google Scholar]
  11. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 2019 ; 99 : 1819–1875. [CrossRef] [PubMed] [Google Scholar]
  12. Wang R, Li B, Lam SM, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics 2020; 47 : 69–83. [CrossRef] [PubMed] [Google Scholar]
  13. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet 2018 ; 19 : 299–310. [CrossRef] [PubMed] [Google Scholar]
  14. Subramanian I, Verma S, Kumar S, et al. Multi-omics data integration, interpretation, and its application. Bioinforma Biol Insights 2020; 14 : 1177932219899051. [CrossRef] [Google Scholar]
  15. Argelaguet R, Velten B, Arnol D, et al. Multi-omics factor analysis–a framework for unsupervised integration of multi-omics data set. Mol Syst Biol 2018 ; 14 : e8124. [CrossRef] [PubMed] [Google Scholar]
  16. Kang M, Ko E, Mersha TB A roadmap for multi-omics data integration using deep learning. Brief Bioinform 2022; 23 : bbab454. [CrossRef] [PubMed] [Google Scholar]
  17. Bodein A, Scott-Boyer MP, Perin O et al. Interpretation of network-based integration from multi-omics longitudinal data. Nucleic Acids Res 2022; 50 : e27. [CrossRef] [PubMed] [Google Scholar]
  18. Brière G, E. Darbo É, P. Thébault P, et al. Consensus clustering applied to multi-omics disease subtyping. BMC Bioinformatics 2021; 22 : 361. [CrossRef] [PubMed] [Google Scholar]
  19. Eng SWM, Olazagasti JM, Goldenberg A, et al. A clinically and biologically based subclassification of the idiopathic inflammatory myopathies using machine learning. ACR Open Rheumatol 2020; 2 : 158–66. [CrossRef] [PubMed] [Google Scholar]
  20. Danieli MG, Tonacci A, Paladini A, et al. A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases. Autoimmun Rev 2022; 21 : 103105. [CrossRef] [Google Scholar]
  21. Heier CR, Zhang A, Nguyen NY, et al. Multi-omics identifies circulating miRNA and protein biomarkers for facioscapulohumeral dystrophy. J Pers Med 2020; 10 : 236. [CrossRef] [PubMed] [Google Scholar]
  22. Mitropoulos K, Katsila T, Patrinos GP, et al. Multi-omics for biomarker discovery and target validation in biofluids for amyotrophic lateral sclerosis diagnosis. OMICS 2018 ; 22 : 52–64. [CrossRef] [PubMed] [Google Scholar]
  23. Djeddi S, Reiss D, Menuet A, et al. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021; 29 : 2514–34. [CrossRef] [PubMed] [Google Scholar]
  24. Liu JC, Dong SS, Shen H, et al. Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76 : 101576. [CrossRef] [PubMed] [Google Scholar]
  25. Mournetas V, Massouridès E, Dupont JB, et al. Myogenesis modelled by human pluripotent stem cells: a multi-omic study of Duchenne myopathy early onset ». J Cachexia Sarcopenia Muscle 2021; 12 : 209–32. [CrossRef] [PubMed] [Google Scholar]
  26. Espinosa-Espinosa J, González-Barriga A, López-Castel A, et al. Deciphering the complex molecular pathogenesis of myotonic dystrophy type 1 through omics studies. Int J Mol Sci 2022; 23 : 1441. [CrossRef] [PubMed] [Google Scholar]
  27. Murakami A, Noda S, Kazuta T, et al. Metabolome and transcriptome analysis on muscle of sporadic inclusion body myositis. Ann Clin Transl Neurol 2022; 9 : 1602–15. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.