Free Access
Issue |
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 15 - 21 | |
Section | Prix SFM | |
DOI | https://doi.org/10.1051/medsci/2023129 | |
Published online | 17 November 2023 |
- JoeAWB, YiL, NatarajanA, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010 ; 12 : 153–163. [CrossRef] [PubMed] [Google Scholar]
- UezumiA, FukadaS, YamamotoN, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2010 ; 12 : 143–152. [CrossRef] [PubMed] [Google Scholar]
- FriedensteinAJ, DeriglasovaUF, KulaginaNN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974 ; 2 : 83–92. [PubMed] [Google Scholar]
- Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12 : 673404. [CrossRef] [PubMed] [Google Scholar]
- ChapmanMA, MukundK, SubramaniamS, et al. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis. Am J Physiol Cell Physiol 2017 ; 312 : C131–C143. [CrossRef] [PubMed] [Google Scholar]
- MalecovaB, GattoS, EtxanizU, et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat Commun 2018 ; 9 : 1–12. [CrossRef] [PubMed] [Google Scholar]
- Oprescu SN, Yue F, Qiu J, et al. Temporal dynamics and heterogeneity of cell populations during Skeletal Muscle Regeneration. iScience 2020; 23 : 100993. [CrossRef] [PubMed] [Google Scholar]
- ScottRW, ArosteguiM, SchweitzerR, et al. Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell 2019 ; 25 : 797–813.e9. [CrossRef] [PubMed] [Google Scholar]
- Rubenstein AB, Smith GR, Raue U, et al. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020; 10 : 229. [CrossRef] [PubMed] [Google Scholar]
- De Micheli AJ, Laurilliard EJ, Heinke CL, et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals Involved in skeletal muscle regeneration. Cell Rep 2020; 30 : 3583–95.e5. [CrossRef] [PubMed] [Google Scholar]
- Negroni E, Kondili M, Muraine L, et al. Muscle fibro-adipogenic progenitors from a single-cell perspective: Focus on their “virtual” secretome. Front Cell Dev Biol 2022; 10 : 952041. [CrossRef] [PubMed] [Google Scholar]
- De Micheli AJ, Spector JA, Elemento O, et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle 2020; 10 : 19. [CrossRef] [PubMed] [Google Scholar]
- LemosDR, BabaeijandaghiF, LowM, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 2015 ; 21 : 786–794. [CrossRef] [PubMed] [Google Scholar]
- BiferaliB, ProiettiD, MozzettaC, et al. Fibro-adipogenic progenitors cross-talk in skeletal muscle: The social network. Front Physiol 2019 ; 10 : 1074. [CrossRef] [PubMed] [Google Scholar]
- ChargéSBP, RudnickiMA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004 ; 84 : 209–238. [CrossRef] [PubMed] [Google Scholar]
- KuswantoW, BurzynD, PanduroM, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 2016 ; 44 : 355–367. [CrossRef] [PubMed] [Google Scholar]
- MozzettaC, ConsalviS, SacconeV, et al. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 2013 ; 5 : 626–639. [CrossRef] [PubMed] [Google Scholar]
- LemosDR, PaylorB, ChangC, et al. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 2012 ; 30 : 1152–1162. [CrossRef] [PubMed] [Google Scholar]
- DortJ, FabreP, MolinaT, et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int 2019 ; 2019 : 4761427. [PubMed] [Google Scholar]
- SerranoAL, Baeza-RajaB, PerdigueroE, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 2008 ; 7 : 33–44. [CrossRef] [PubMed] [Google Scholar]
- HardyD, BesnardA, LatilM, et al. Comparative study of injury models for studying muscle regeneration in mice. Plos One 2016 ; 11 : e0147198. [CrossRef] [PubMed] [Google Scholar]
- SulHS. Minireview: Pref-1: Role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 2009 ; 23 : 1717–1725. [CrossRef] [PubMed] [Google Scholar]
- GilliesAR, LieberRL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011 ; 44 : 318–331. [CrossRef] [PubMed] [Google Scholar]
- Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors - time for new definitions. Skelet Muscle 2021; 11 : 16. [CrossRef] [PubMed] [Google Scholar]
- LaumonierT, MenetreyJ. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016 ; 3 : 15. [CrossRef] [PubMed] [Google Scholar]
- Fitzgerald G, Turiel G, Gorski T, et al. MME+ fibro-adipogenic progenitors are the dominant adipogenic population during fatty infiltration in human skeletal muscle. Commun Biol 2023; 6 : 111. [CrossRef] [PubMed] [Google Scholar]
- Giuliani G, Vumbaca S, Fuoco C, et al. SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death Dis 2021; 12 : 1–24. [CrossRef] [PubMed] [Google Scholar]
- ZukPA, ZhuM, MizunoH, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001 ; 7 : 211–228. [CrossRef] [PubMed] [Google Scholar]
- Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 2019; 364 : eaav2501. [CrossRef] [PubMed] [Google Scholar]
- SchwaliePC, DongH, ZacharaM, et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 2018 ; 559 : 103–108. [CrossRef] [PubMed] [Google Scholar]
- Emont MP, Jacobs C, Essene AL, et al. A single-cell atlas of human and mouse white adipose tissue. Nature 2022; 603 : 926–33. [CrossRef] [PubMed] [Google Scholar]
- Sárvári AK, Van Hauwaert EL, Markussen LK, et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 2021; 33 : 437–53.e5. [CrossRef] [PubMed] [Google Scholar]
- BurlRB, RamseyerVD, RondiniEA, et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 2018 ; 28 : 300–9.e4. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Yuan M, Xiang Q, et al. Single-cell RNA sequencing of subcutaneous adipose tissues identifies therapeutic targets for cancer-associated lymphedema. Cell Discov 2022; 8 : 1–20. [PubMed] [Google Scholar]
- Biltz NK, Collins KH, Shen KC, et al. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J Physiol 2020; 598 : 2669–83. [CrossRef] [PubMed] [Google Scholar]
- Sastourné-Arrey Q, Mathieu M, Contreras X, et al. Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nat Commun 2023; 14 : 80. [CrossRef] [PubMed] [Google Scholar]
- Gil-OrtegaM, GaridouL, BarreauC, et al. Native adipose stromal cells egress from adipose tissue in vivo: Evidence during lymph node activation. Stem Cells 2013 ; 31 : 1309–1320. [CrossRef] [PubMed] [Google Scholar]
- GirousseA, Gil-OrtegaM, BourlierV, et al. The release of adipose stromal cells from subcutaneous adipose tissue regulates ectopic intramuscular adipocyte deposition. Cell Rep 2019 ; 27 : 323–33.e5. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.