Accès gratuit
Numéro
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
Page(s) 15 - 21
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2023129
Publié en ligne 17 novembre 2023
  1. JoeAWB, YiL, NatarajanA, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010 ; 12 : 153–163. [CrossRef] [PubMed] [Google Scholar]
  2. UezumiA, FukadaS, YamamotoN, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2010 ; 12 : 143–152. [CrossRef] [PubMed] [Google Scholar]
  3. FriedensteinAJ, DeriglasovaUF, KulaginaNN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974 ; 2 : 83–92. [PubMed] [Google Scholar]
  4. Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12 : 673404. [CrossRef] [PubMed] [Google Scholar]
  5. ChapmanMA, MukundK, SubramaniamS, et al. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis. Am J Physiol Cell Physiol 2017 ; 312 : C131–C143. [CrossRef] [PubMed] [Google Scholar]
  6. MalecovaB, GattoS, EtxanizU, et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat Commun 2018 ; 9 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  7. Oprescu SN, Yue F, Qiu J, et al. Temporal dynamics and heterogeneity of cell populations during Skeletal Muscle Regeneration. iScience 2020; 23 : 100993. [CrossRef] [PubMed] [Google Scholar]
  8. ScottRW, ArosteguiM, SchweitzerR, et al. Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell 2019 ; 25 : 797–813.e9. [CrossRef] [PubMed] [Google Scholar]
  9. Rubenstein AB, Smith GR, Raue U, et al. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020; 10 : 229. [CrossRef] [PubMed] [Google Scholar]
  10. De Micheli AJ, Laurilliard EJ, Heinke CL, et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals Involved in skeletal muscle regeneration. Cell Rep 2020; 30 : 3583–95.e5. [CrossRef] [PubMed] [Google Scholar]
  11. Negroni E, Kondili M, Muraine L, et al. Muscle fibro-adipogenic progenitors from a single-cell perspective: Focus on their “virtual” secretome. Front Cell Dev Biol 2022; 10 : 952041. [CrossRef] [PubMed] [Google Scholar]
  12. De Micheli AJ, Spector JA, Elemento O, et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle 2020; 10 : 19. [CrossRef] [PubMed] [Google Scholar]
  13. LemosDR, BabaeijandaghiF, LowM, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 2015 ; 21 : 786–794. [CrossRef] [PubMed] [Google Scholar]
  14. BiferaliB, ProiettiD, MozzettaC, et al. Fibro-adipogenic progenitors cross-talk in skeletal muscle: The social network. Front Physiol 2019 ; 10 : 1074. [CrossRef] [PubMed] [Google Scholar]
  15. ChargéSBP, RudnickiMA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004 ; 84 : 209–238. [CrossRef] [PubMed] [Google Scholar]
  16. KuswantoW, BurzynD, PanduroM, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 2016 ; 44 : 355–367. [CrossRef] [PubMed] [Google Scholar]
  17. MozzettaC, ConsalviS, SacconeV, et al. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 2013 ; 5 : 626–639. [CrossRef] [PubMed] [Google Scholar]
  18. LemosDR, PaylorB, ChangC, et al. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 2012 ; 30 : 1152–1162. [CrossRef] [PubMed] [Google Scholar]
  19. DortJ, FabreP, MolinaT, et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int 2019 ; 2019 : 4761427. [PubMed] [Google Scholar]
  20. SerranoAL, Baeza-RajaB, PerdigueroE, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 2008 ; 7 : 33–44. [CrossRef] [PubMed] [Google Scholar]
  21. HardyD, BesnardA, LatilM, et al. Comparative study of injury models for studying muscle regeneration in mice. Plos One 2016 ; 11 : e0147198. [CrossRef] [PubMed] [Google Scholar]
  22. SulHS. Minireview: Pref-1: Role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 2009 ; 23 : 1717–1725. [CrossRef] [PubMed] [Google Scholar]
  23. GilliesAR, LieberRL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011 ; 44 : 318–331. [CrossRef] [PubMed] [Google Scholar]
  24. Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors - time for new definitions. Skelet Muscle 2021; 11 : 16. [CrossRef] [PubMed] [Google Scholar]
  25. LaumonierT, MenetreyJ. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016 ; 3 : 15. [CrossRef] [PubMed] [Google Scholar]
  26. Fitzgerald G, Turiel G, Gorski T, et al. MME+ fibro-adipogenic progenitors are the dominant adipogenic population during fatty infiltration in human skeletal muscle. Commun Biol 2023; 6 : 111. [CrossRef] [PubMed] [Google Scholar]
  27. Giuliani G, Vumbaca S, Fuoco C, et al. SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death Dis 2021; 12 : 1–24. [CrossRef] [PubMed] [Google Scholar]
  28. ZukPA, ZhuM, MizunoH, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001 ; 7 : 211–228. [CrossRef] [PubMed] [Google Scholar]
  29. Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 2019; 364 : eaav2501. [CrossRef] [PubMed] [Google Scholar]
  30. SchwaliePC, DongH, ZacharaM, et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 2018 ; 559 : 103–108. [CrossRef] [PubMed] [Google Scholar]
  31. Emont MP, Jacobs C, Essene AL, et al. A single-cell atlas of human and mouse white adipose tissue. Nature 2022; 603 : 926–33. [CrossRef] [PubMed] [Google Scholar]
  32. Sárvári AK, Van Hauwaert EL, Markussen LK, et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 2021; 33 : 437–53.e5. [CrossRef] [PubMed] [Google Scholar]
  33. BurlRB, RamseyerVD, RondiniEA, et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 2018 ; 28 : 300–9.e4. [CrossRef] [PubMed] [Google Scholar]
  34. Liu X, Yuan M, Xiang Q, et al. Single-cell RNA sequencing of subcutaneous adipose tissues identifies therapeutic targets for cancer-associated lymphedema. Cell Discov 2022; 8 : 1–20. [PubMed] [Google Scholar]
  35. Biltz NK, Collins KH, Shen KC, et al. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J Physiol 2020; 598 : 2669–83. [CrossRef] [PubMed] [Google Scholar]
  36. Sastourné-Arrey Q, Mathieu M, Contreras X, et al. Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nat Commun 2023; 14 : 80. [CrossRef] [PubMed] [Google Scholar]
  37. Gil-OrtegaM, GaridouL, BarreauC, et al. Native adipose stromal cells egress from adipose tissue in vivo: Evidence during lymph node activation. Stem Cells 2013 ; 31 : 1309–1320. [CrossRef] [PubMed] [Google Scholar]
  38. GirousseA, Gil-OrtegaM, BourlierV, et al. The release of adipose stromal cells from subcutaneous adipose tissue regulates ectopic intramuscular adipocyte deposition. Cell Rep 2019 ; 27 : 323–33.e5. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.