Open Access
Issue
Med Sci (Paris)
Volume 39, Number 10, Octobre 2023
Page(s) 744 - 753
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023124
Published online 09 November 2023
  1. Junien C, Panchenko P, Pirola L, et al. Le nouveau paradigme de l’origine de la santé et des maladies (DOHaD). Épigénétique, environnement : preuves et chaînons manquants. Med Sci (Paris) 2016 ; 32 : 27–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Storme L, Luton D, Abdennebi-Najar L, et al. DOHaD : conséquences à long terme de la pathologie périnatale. Retard de croissance intra-utérin et prématurité. Med Sci (Paris) 2016 ; 32 : 74–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Nobile, S, Di Sipio Morgia, C, Vento, G. Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. J Pers Med 2022; 12 : 157. [CrossRef] [PubMed] [Google Scholar]
  4. Les 1000 premiers jours, Là où tout commence. https://solidarites-sante.gouv.fr/IMG/pdf/rapport-1000-premiers-jours.pdf. [Google Scholar]
  5. Lammertink F, Vinkers CH, Tataranno ML, et al. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11 : 531571. [CrossRef] [PubMed] [Google Scholar]
  6. Andersen SL. Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2015 ; 27 : 477–491. [CrossRef] [PubMed] [Google Scholar]
  7. Verney C, Gressens P, Vitalis T. anatomie et physiologie du stress traumatique. Med Sci (Paris) 2021; 37 : 1002–10. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. National Scientific Council on the Developing Child. Excessive stress disrupts the architecture of the developing brain: Working paper No. 3. (2005/2014). www.developingchild.harvard.edu. [Google Scholar]
  9. Cyrulnik B. Un merveilleux malheur. Paris : Ed. Odile Jacob, 1999 : 237 p. [Google Scholar]
  10. Moisan MP, Le Moal M. Le stress dans tous ses états. Med Sci (Paris) 2012 ; 28 : 612–617. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997 ; 387 : 167–178. [CrossRef] [PubMed] [Google Scholar]
  12. Bourgeois JP. Synaptogenèses et épigenèses cérébrales. Med Sci (Paris) 2005 ; 21 : 428–433. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Ouyang M, Dubois J, Yu Q, et al. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 2019 ; 15 : 836–850. [CrossRef] [PubMed] [Google Scholar]
  14. Nelson CA, Gabard-Durnam L. Early adversity and critical Periods: Neurodevelopmental consequences of violating the expectable environment Trends Neurosci 2020; 43 : 133–43. [CrossRef] [Google Scholar]
  15. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles Trends. Cogn Sci 2010 ; 14 : 277–290. [Google Scholar]
  16. Porges SW. La théorie polyvagale. Fondements neurophysiologiques des émotions, de l’attachement, de la communication et de l’autorégulation. Paris : ecp Sciences, 2021 : 373 p. [Google Scholar]
  17. Porges SW. Polyvagal Theory: A Science of Safety. Front Integr Neurosci 2022; 16 : 871227. [CrossRef] [PubMed] [Google Scholar]
  18. Pierrehumbert B. Le premier lien. Théorie de l’attachement. Paris : Odile Jacob, 2003 : 416 p. [Google Scholar]
  19. Verney C.. Distribution of the Catecholaminergic neurons in the Central Nervous System of human embryos and fetuses. Microsc Res and Tech 1999 ; 46 : 24–47. [CrossRef] [PubMed] [Google Scholar]
  20. Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. anat. Record 2002 ; 267 : 87–93. [Google Scholar]
  21. Kinney HC, Broadbelt KG, Haynes RL, et al. The serotonergic anatomy of the developing human medulla oblongata: implications for pediatric disorders of homeostasis. J Chem Neuroanat 2011 ; 41 : 182–199. [CrossRef] [PubMed] [Google Scholar]
  22. van den Heuvel MI, Thomason ME. Functional connectivity of the human brain in utero. Trends Cogn Sci 2016 ; 20 : 931–939. [CrossRef] [PubMed] [Google Scholar]
  23. Menon V.. Large-scale brain networks and psychopathology: a unifying triple network model Trends. Cogn Sci 2011 ; 15 : 10. [Google Scholar]
  24. Lammertink F, van den Heuvel MP, Hermans EJ, et al. Early-life stress exposure and large-scale covariance brain networks in extremely preterm-born infants. Translational Psychiatry 2022; 12 : 256. [CrossRef] [PubMed] [Google Scholar]
  25. van den Heuvel MI, Turk E, Manning JH. Hubs in the human fetal brain network. Dev Cog Neurosci 2018 ; 30 : 108–115. [CrossRef] [Google Scholar]
  26. Dubois J, Poupon C, Thirion B, et al. Exploring the Early Organization and Maturation of Linguistic Pathways in the Human Infant Brain. Cerebral Cortex 2016 ; 26 : 2283–2298. [CrossRef] [PubMed] [Google Scholar]
  27. Ross KM, Cole SW, Carroll JE, et al. Elevated pro-inflammatory gene expression in the third trimester of pregnancy in mothers who experienced stressful life events. Brain Behav Immun 2019 ; 76 : 97–103. [CrossRef] [PubMed] [Google Scholar]
  28. Capron LE, Ramchandani PG, Glover V. Maternal prenatal stress and placental gene expression of NR3C1 and HSD11B2: The effects of maternal ethnicity. Psychoneuroendocrinology 2018 ; 87 : 166–172. [CrossRef] [PubMed] [Google Scholar]
  29. Monk C, Feng T, Lee S, et al. Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry 2016 ; 173 : 705–713. [CrossRef] [PubMed] [Google Scholar]
  30. Kundakovic M, Gudsnuk K, Herbstman JB, et al. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 2015 ; 112 : 6807–6813. [CrossRef] [PubMed] [Google Scholar]
  31. Timothy A, Benegal V, Shankarappa B, et al. Influence of early adversity on cortisol reactivity, SLC6A4 methylation and externalizing behavior in children of alcoholics. Prog Neuropsychopharmacol Biol Psychiatry 2019 ; 94 : 109649. [CrossRef] [PubMed] [Google Scholar]
  32. Walter MH, Abele H, Plappert CF. The Role of Oxytocin and the Effect of Stress During Childbirth: Neurobiological Basics and Implications for Mother and Child. Front Endocrinol 2021; 12 : 742236. [CrossRef] [PubMed] [Google Scholar]
  33. Busuito A, Quigley KM, Moore GA, et al. In sync: Physiological correlates of behavioral synchrony in infants and mothers. Dev Psychol 2019 ; 55 : 1034–1045. [CrossRef] [PubMed] [Google Scholar]
  34. Field T, Diego M, Hernandez-Reif M. Prematurity and potential predictors. Int J Neurosci 2008 ; 118 : 277–289. [CrossRef] [PubMed] [Google Scholar]
  35. Tronick E, Als H, Adamson L, et al. The infant’s response to entrapment between contradictory messages in face-to-face interaction. J Am Acad Child Psychiatry 1978 ; 17 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  36. Cismaru AL, Gui L, Vasung L, et al. Altered amygdala development and fear processing in prematurely born infants. Front Neuroanatomy 2016 ; 10 : 55. [CrossRef] [Google Scholar]
  37. Humphreys KL, Camacho MC, Roth MC, et al. Prenatal stress exposure and multimodal assessment of amygdala-medial prefrontal cortex connectivity in infants. Dev Cogn Neurosci 2020; 46 : 100877. [CrossRef] [PubMed] [Google Scholar]
  38. Brady RG, Rogers CE, Prochaska T, et al. The Effects of Prenatal Exposure to Neighborhood Crime on Neonatal Functional Connectivity. Biol Psychiatry 2022; 92 : 139–48. [CrossRef] [PubMed] [Google Scholar]
  39. Junien C, Panchenko P, Fneich S, et al. Épigénétique et réponses transgénérationnelles aux impacts de l’environnement. Des faits aux lacunes. Med Sci (Paris) 2016 ; 32 : 35–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Cynulnik B. Des âmes et des saisons. Paris : Odile Jacob, 2021 : 297 p. [Google Scholar]
  41. Kaiser RH, Clegg R, Goer F. Childhood Stress, Grown-up Brain Networks: Corticolimbic Correlates of Threat-related Early Life Stress and Adult Stress. Response Psychol Med 2018 ; 48 : 1157–1166. [CrossRef] [PubMed] [Google Scholar]
  42. Ramaswamy VV, Bandyopadhyay T, Nanda D, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: A systematic review and network meta-analysis.et al. JAMA Pediatr 2021; 1 :175. [Google Scholar]
  43. Indrio F, Martini S, Francavilla R, et al. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front Pediatr 2017 ; 5 : 178. [CrossRef] [PubMed] [Google Scholar]
  44. Aita M, De Clifford Faugère G, Lavallée A, et al. Effectiveness of interventions on early neurodevelopment of preterm infants: a systematic review and meta-analysis. BMC Pediatrics 2021; 21 : 210. [CrossRef] [PubMed] [Google Scholar]
  45. Jefferies AL. Société canadienne de pédiatrie, Comité d’étude du foetus et du nouveau-né. La méthode kangourou pour le nourrisson prématuré et sa famille. Paediatrics & Child Health 2012 ; 17 : 144–146. [CrossRef] [Google Scholar]
  46. Moberg KU, Handlin L, Petersson M. Neuroendocrine mechanisms involved in the physiological effects caused by skin-to-skin contact – With a particular focus on the oxytocinergic system. Infant Behav and Dev 2020; 61 : 101482. [CrossRef] [Google Scholar]
  47. der Kolk BV. Le corps n’oublie rien; Le cerveau, l’esprit et le corps dans la guérison du traumatisme. Paris: Albin Michel, 2018 : 590 p [Google Scholar]
  48. Gourion D. Méthode anti-stress. Paris : Ed. Marabout, 2022 : 224 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.