Open Access
Issue
Med Sci (Paris)
Volume 39, Number 10, Octobre 2023
Page(s) 738 - 743
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023123
Published online 09 November 2023
  1. Baluška F, Yokawa K, Mancuso S, et al. Understanding of anesthesia – Why consciousness is essential for life and not based on genes. Commun Integr Biol 2016 ; 9 : e1238118. [CrossRef] [PubMed] [Google Scholar]
  2. Bancroft WD, Richter GH. Claude bernard’s theory of narcosis. Proc Natl Acad Sci USA 1930 ; 16 : 573–577. [CrossRef] [PubMed] [Google Scholar]
  3. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors?. Nature 1984 ; 310 : 599–601. [CrossRef] [PubMed] [Google Scholar]
  4. Pavel MA Petersen EN, Wang H, et al. Studies on the mechanism of general anesthesia. Proc Natl Acad Sci USA 2020; 117 : 13757–66. [CrossRef] [PubMed] [Google Scholar]
  5. Platholi J, Hemmings HC. Effects of General anesthetics on Synaptic Transmission and Plasticity. Curr Neuropharmacol 2022; 20 : 27–54. [CrossRef] [PubMed] [Google Scholar]
  6. Timic Stamenic T, Todorovic SM. Thalamic T-Type Calcium Channels as Targets for Hypnotics and General anesthetics. Int J Mol Sci 2022; 23 : 2349. [CrossRef] [PubMed] [Google Scholar]
  7. Orser BA, Canning KJ, MacDonald JF. Mechanisms of general anesthesia. Curr Opin anesthesiol 2002 ; 15 : 427. [CrossRef] [PubMed] [Google Scholar]
  8. Li N, Lu D, Yang L, et al. Nuclear Spin Attenuates the anesthetic Potency of Xenon Isotopes in Mice: Implications for the Mechanisms of anesthesia and Consciousness. anesthesiology 2018 ; 129 : 271–277. [CrossRef] [PubMed] [Google Scholar]
  9. Hameroff S, Penrose R. Consciousness in the universe: A review of the ‘Orch OR’ theory. Phys Life Rev 2014 ; 11 : 39–78. [CrossRef] [PubMed] [Google Scholar]
  10. Yanagidate F, Strichartz GR. Local anesthetics. In: Stein C, editor. analgesia. Handbook of Experimental Pharmacology. Berlin, Heidelberg : Springer, 2007 : pp. 95–127. [Google Scholar]
  11. Catterall WA, Zheng N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 2015 ; 40 : 526–534. [CrossRef] [PubMed] [Google Scholar]
  12. Ren D, Navarro B, Xu H, et al. A Prokaryotic Voltage-Gated Sodium Channel. Science 2001 ; 294 : 2372–2375. [Google Scholar]
  13. Shimomura T, Yonekawa Y, Nagura H, et al. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife 2020; 9 : e52828. [CrossRef] [PubMed] [Google Scholar]
  14. Liebeskind BJ, Hillis DM, Zakon HH. Evolution of sodium channels predates the origin of nervous systems in animals. Proc Natl Acad Sci USA 2011 ; 108 : 9154–9159. [CrossRef] [PubMed] [Google Scholar]
  15. Liebeskind BJ, Hillis DM, Zakon HH. Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade. Mol Biol Evol 2012 ; 29 : 3613–3616. [CrossRef] [PubMed] [Google Scholar]
  16. Pozdnyakov I, Matantseva O, Skarlato S. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 2018 ; 8 : 3539. [CrossRef] [PubMed] [Google Scholar]
  17. Liebeskind BJ, Hillis DM, Zakon HH. Independent acquisition of sodium selectivity in bacterial and animal sodium channels. Curr Biol 2013 ; 23 : R948–R949. [CrossRef] [PubMed] [Google Scholar]
  18. Bruni GN, Weekley RA, Dodd BJT, et al. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc Natl Acad Sci USA 2017 ; 114 : 9445–9450. [CrossRef] [PubMed] [Google Scholar]
  19. Masi E, Ciszak Marzena, Santopolo L, et al. Electrical spiking in bacterial biofilms. J R Soc Interface 2015 ; 12 : 20141036. [CrossRef] [PubMed] [Google Scholar]
  20. Martinez-Corral R, Liu J, Prindle A, et al. Metabolic basis of brain-like electrical signalling in bacterial communities. Philos Trans R Soc B Bio. Sci 2019; 374 : 20180382. [CrossRef] [PubMed] [Google Scholar]
  21. Edel KH, Marchadier E, Brownlee C, et al. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2017 ; 27 : R667–R679. [CrossRef] [PubMed] [Google Scholar]
  22. Adamatzky A, Gandia A. Fungi anaesthesia. Sci Rep 2022; 12 : 340. [CrossRef] [PubMed] [Google Scholar]
  23. Nishikawa A, Sakamoto Y, Sakatoku A, et al. Induction of deflagellation by various local anesthetics in Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae). Phycol Res 2010 ; 58 : 79–87. [CrossRef] [Google Scholar]
  24. Fujiu K, Nakayama Y, Yanagisawa A, et al. Chlamydomonas CAV2 Encodes a Voltage- Dependent Calcium Channel Required for the Flagellar Waveform Conversion. Curr Biol 2009 ; 19 : 133–139. [CrossRef] [PubMed] [Google Scholar]
  25. Helliwell KE, Chrachri A, Koester JA, et al. Alternative Mechanisms for Fast Na+/Ca2+ Signaling in Eukaryotes via a Novel Class of Single-Domain Voltage-Gated Channels. Curr Biol 2019 ; 29 : 1503–11e6. [CrossRef] [PubMed] [Google Scholar]
  26. Farmer EE, Gao Y-Q, Lenzoni G, et al. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol 2020; 227 : 1037–50. [CrossRef] [PubMed] [Google Scholar]
  27. Lee J, Calvo P. The potential of plant action potentials. 2022; http://philsci-archive.pitt.edu/21287/. [Google Scholar]
  28. Johnson BR, Wyttenbach RA, Wayne R, et al. Action Potentials in a Giant Algal Cell: A Comparative Approach to Mechanisms and Evolution of Excitability. J Undergrad Neurosci Educ 2002 ; 1 : A23–A27. [PubMed] [Google Scholar]
  29. Cuin TA, Dreyer I, Michard E. The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials. Int J Mol Sci 2018 ; 19 : 926. [CrossRef] [PubMed] [Google Scholar]
  30. Scherzer S, Huang S, Iosip A, et al. Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci Rep 2022; 12 : 2851. [CrossRef] [PubMed] [Google Scholar]
  31. Toyota M, Spencer D, Sawai-Toyota S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018 ; 361 : 1112–1115. [CrossRef] [PubMed] [Google Scholar]
  32. Xu B, Sai N, Gilliham M. The emerging role of GABA as a transport regulator and physiological signal. Plant Physiol 2021; 187 : 2005–16. [CrossRef] [PubMed] [Google Scholar]
  33. Bouteau F, Grésillon E, Chartier D, et al. Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. Plant Signal Behav 2021; 16 : 2004769. [CrossRef] [PubMed] [Google Scholar]
  34. Katicheva L, Sukhov V, Akinchits E, et al. Ionic Nature of Burn-Induced Variation Potential in Wheat Leaves. Plant Cell Physiol 2014 ; 55 : 1511–1519. [CrossRef] [PubMed] [Google Scholar]
  35. Katicheva L, Sukhov V. Bushueva, et al. Evaluation of the open time of calcium channels at variation potential generation in wheat leaf cells. Plant Signal Behav 2015 ; 10 : e993231. [CrossRef] [PubMed] [Google Scholar]
  36. Kelz MB, Mashour GA. The Biology of General anesthesia from Paramecium to Primate. Curr Biol 2019 ; 29 : R1199–R1210. [CrossRef] [PubMed] [Google Scholar]
  37. Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002 ; 9 : 367–393. [CrossRef] [PubMed] [Google Scholar]
  38. Okada Y, Maeno E, Mori S. anion Channel Involved in Induction of Apoptosis and Necrosis. In: Lauf PK, Adragna NC, editors. Cell Volume and Signaling. Advances in Experimental Medicine and Biology. Boston, MA : Springer, US, 2005 : pp. 205–9. [CrossRef] [Google Scholar]
  39. Bortner CD, Cidlowski JA. Cell Shrinkage and Monovalent Cation Fluxes. Arch Biochem Biophys 2007 ; 462 : 176–188. [CrossRef] [PubMed] [Google Scholar]
  40. Bouteau F, Reboutier D, Tran D, et al. Ion Transport in Plant Cell Shrinkage During Death. Front Cell De. Biol 2020; 8. [Google Scholar]
  41. Boussen S, Cordier PY. Conscience et anesthésie. anesth. Réanimation 2020; 6 : 327–36. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.