Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 10, Octobre 2023
Page(s) 738 - 743
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023123
Publié en ligne 9 novembre 2023
  1. Baluška F, Yokawa K, Mancuso S, et al. Understanding of anesthesia – Why consciousness is essential for life and not based on genes. Commun Integr Biol 2016 ; 9 : e1238118. [CrossRef] [PubMed] [Google Scholar]
  2. Bancroft WD, Richter GH. Claude bernard’s theory of narcosis. Proc Natl Acad Sci USA 1930 ; 16 : 573–577. [CrossRef] [PubMed] [Google Scholar]
  3. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors?. Nature 1984 ; 310 : 599–601. [CrossRef] [PubMed] [Google Scholar]
  4. Pavel MA Petersen EN, Wang H, et al. Studies on the mechanism of general anesthesia. Proc Natl Acad Sci USA 2020; 117 : 13757–66. [CrossRef] [PubMed] [Google Scholar]
  5. Platholi J, Hemmings HC. Effects of General anesthetics on Synaptic Transmission and Plasticity. Curr Neuropharmacol 2022; 20 : 27–54. [CrossRef] [PubMed] [Google Scholar]
  6. Timic Stamenic T, Todorovic SM. Thalamic T-Type Calcium Channels as Targets for Hypnotics and General anesthetics. Int J Mol Sci 2022; 23 : 2349. [CrossRef] [PubMed] [Google Scholar]
  7. Orser BA, Canning KJ, MacDonald JF. Mechanisms of general anesthesia. Curr Opin anesthesiol 2002 ; 15 : 427. [CrossRef] [PubMed] [Google Scholar]
  8. Li N, Lu D, Yang L, et al. Nuclear Spin Attenuates the anesthetic Potency of Xenon Isotopes in Mice: Implications for the Mechanisms of anesthesia and Consciousness. anesthesiology 2018 ; 129 : 271–277. [CrossRef] [PubMed] [Google Scholar]
  9. Hameroff S, Penrose R. Consciousness in the universe: A review of the ‘Orch OR’ theory. Phys Life Rev 2014 ; 11 : 39–78. [CrossRef] [PubMed] [Google Scholar]
  10. Yanagidate F, Strichartz GR. Local anesthetics. In: Stein C, editor. analgesia. Handbook of Experimental Pharmacology. Berlin, Heidelberg : Springer, 2007 : pp. 95–127. [Google Scholar]
  11. Catterall WA, Zheng N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 2015 ; 40 : 526–534. [CrossRef] [PubMed] [Google Scholar]
  12. Ren D, Navarro B, Xu H, et al. A Prokaryotic Voltage-Gated Sodium Channel. Science 2001 ; 294 : 2372–2375. [Google Scholar]
  13. Shimomura T, Yonekawa Y, Nagura H, et al. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife 2020; 9 : e52828. [CrossRef] [PubMed] [Google Scholar]
  14. Liebeskind BJ, Hillis DM, Zakon HH. Evolution of sodium channels predates the origin of nervous systems in animals. Proc Natl Acad Sci USA 2011 ; 108 : 9154–9159. [CrossRef] [PubMed] [Google Scholar]
  15. Liebeskind BJ, Hillis DM, Zakon HH. Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade. Mol Biol Evol 2012 ; 29 : 3613–3616. [CrossRef] [PubMed] [Google Scholar]
  16. Pozdnyakov I, Matantseva O, Skarlato S. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 2018 ; 8 : 3539. [CrossRef] [PubMed] [Google Scholar]
  17. Liebeskind BJ, Hillis DM, Zakon HH. Independent acquisition of sodium selectivity in bacterial and animal sodium channels. Curr Biol 2013 ; 23 : R948–R949. [CrossRef] [PubMed] [Google Scholar]
  18. Bruni GN, Weekley RA, Dodd BJT, et al. Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc Natl Acad Sci USA 2017 ; 114 : 9445–9450. [CrossRef] [PubMed] [Google Scholar]
  19. Masi E, Ciszak Marzena, Santopolo L, et al. Electrical spiking in bacterial biofilms. J R Soc Interface 2015 ; 12 : 20141036. [CrossRef] [PubMed] [Google Scholar]
  20. Martinez-Corral R, Liu J, Prindle A, et al. Metabolic basis of brain-like electrical signalling in bacterial communities. Philos Trans R Soc B Bio. Sci 2019; 374 : 20180382. [CrossRef] [PubMed] [Google Scholar]
  21. Edel KH, Marchadier E, Brownlee C, et al. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2017 ; 27 : R667–R679. [CrossRef] [PubMed] [Google Scholar]
  22. Adamatzky A, Gandia A. Fungi anaesthesia. Sci Rep 2022; 12 : 340. [CrossRef] [PubMed] [Google Scholar]
  23. Nishikawa A, Sakamoto Y, Sakatoku A, et al. Induction of deflagellation by various local anesthetics in Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae). Phycol Res 2010 ; 58 : 79–87. [CrossRef] [Google Scholar]
  24. Fujiu K, Nakayama Y, Yanagisawa A, et al. Chlamydomonas CAV2 Encodes a Voltage- Dependent Calcium Channel Required for the Flagellar Waveform Conversion. Curr Biol 2009 ; 19 : 133–139. [CrossRef] [PubMed] [Google Scholar]
  25. Helliwell KE, Chrachri A, Koester JA, et al. Alternative Mechanisms for Fast Na+/Ca2+ Signaling in Eukaryotes via a Novel Class of Single-Domain Voltage-Gated Channels. Curr Biol 2019 ; 29 : 1503–11e6. [CrossRef] [PubMed] [Google Scholar]
  26. Farmer EE, Gao Y-Q, Lenzoni G, et al. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol 2020; 227 : 1037–50. [CrossRef] [PubMed] [Google Scholar]
  27. Lee J, Calvo P. The potential of plant action potentials. 2022; http://philsci-archive.pitt.edu/21287/. [Google Scholar]
  28. Johnson BR, Wyttenbach RA, Wayne R, et al. Action Potentials in a Giant Algal Cell: A Comparative Approach to Mechanisms and Evolution of Excitability. J Undergrad Neurosci Educ 2002 ; 1 : A23–A27. [PubMed] [Google Scholar]
  29. Cuin TA, Dreyer I, Michard E. The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials. Int J Mol Sci 2018 ; 19 : 926. [CrossRef] [PubMed] [Google Scholar]
  30. Scherzer S, Huang S, Iosip A, et al. Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci Rep 2022; 12 : 2851. [CrossRef] [PubMed] [Google Scholar]
  31. Toyota M, Spencer D, Sawai-Toyota S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018 ; 361 : 1112–1115. [CrossRef] [PubMed] [Google Scholar]
  32. Xu B, Sai N, Gilliham M. The emerging role of GABA as a transport regulator and physiological signal. Plant Physiol 2021; 187 : 2005–16. [CrossRef] [PubMed] [Google Scholar]
  33. Bouteau F, Grésillon E, Chartier D, et al. Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. Plant Signal Behav 2021; 16 : 2004769. [CrossRef] [PubMed] [Google Scholar]
  34. Katicheva L, Sukhov V, Akinchits E, et al. Ionic Nature of Burn-Induced Variation Potential in Wheat Leaves. Plant Cell Physiol 2014 ; 55 : 1511–1519. [CrossRef] [PubMed] [Google Scholar]
  35. Katicheva L, Sukhov V. Bushueva, et al. Evaluation of the open time of calcium channels at variation potential generation in wheat leaf cells. Plant Signal Behav 2015 ; 10 : e993231. [CrossRef] [PubMed] [Google Scholar]
  36. Kelz MB, Mashour GA. The Biology of General anesthesia from Paramecium to Primate. Curr Biol 2019 ; 29 : R1199–R1210. [CrossRef] [PubMed] [Google Scholar]
  37. Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002 ; 9 : 367–393. [CrossRef] [PubMed] [Google Scholar]
  38. Okada Y, Maeno E, Mori S. anion Channel Involved in Induction of Apoptosis and Necrosis. In: Lauf PK, Adragna NC, editors. Cell Volume and Signaling. Advances in Experimental Medicine and Biology. Boston, MA : Springer, US, 2005 : pp. 205–9. [CrossRef] [Google Scholar]
  39. Bortner CD, Cidlowski JA. Cell Shrinkage and Monovalent Cation Fluxes. Arch Biochem Biophys 2007 ; 462 : 176–188. [CrossRef] [PubMed] [Google Scholar]
  40. Bouteau F, Reboutier D, Tran D, et al. Ion Transport in Plant Cell Shrinkage During Death. Front Cell De. Biol 2020; 8. [Google Scholar]
  41. Boussen S, Cordier PY. Conscience et anesthésie. anesth. Réanimation 2020; 6 : 327–36. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.