Open Access
Issue
Med Sci (Paris)
Volume 39, Number 10, Octobre 2023
Page(s) 754 - 762
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023125
Published online 09 November 2023
  1. Nicoletti A, Ainora ME, Cintoni M, et al. Dynamics of liver stiffness predicts complications in patients with HCV related cirrhosis treated with direct-acting antivirals. Digestive and Liver Disease 2023; may 2 :S1590–8658(23)00579–0. [Google Scholar]
  2. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016 ; 64 : S84–S101. [CrossRef] [PubMed] [Google Scholar]
  3. Costante F, Stella L, Santopaolo F, et al. Molecular and Clinical Features of Hepatocellular Carcinoma in Patients with HBV-HDV Infection. J Hepatocell Carcinoma 2023; 10 : 713–24. [CrossRef] [Google Scholar]
  4. Diamond DL, Syder AJ, Jacobs JMet al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 2010 ; 6 : e1000719. [CrossRef] [PubMed] [Google Scholar]
  5. Perrin-Cocon L, Kundlacz C, Jacquemin C, et al. Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. Int J Mol Sci 2022; 23 : 919. [CrossRef] [PubMed] [Google Scholar]
  6. Jung G-S, Jeon J-H, Choi Y-K, et al. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication. Sci Rep 2016 ; 6 : 30846. [CrossRef] [PubMed] [Google Scholar]
  7. Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004 ; 126 : 840–848. [CrossRef] [PubMed] [Google Scholar]
  8. Hsieh M-J, Lan K-P, Liu H-Y, et al. Hepatitis C virus E2 protein involve in insulin resistance through an impairment of Akt/PKB and GSK3β signaling in hepatocytes. BMC Gastroenterol 2012 ; 12 : 74. [CrossRef] [PubMed] [Google Scholar]
  9. Wu Y-H, Yang Y, Chen C-H, et al. Aerobic glycolysis supports hepatitis B virus protein synthesis through interaction between viral surface antigen and pyruvate kinase isoform M2. PLoS Pathog 2021; 17 : e1008866. [CrossRef] [PubMed] [Google Scholar]
  10. Xie Q, Fan F, Wei W, et al. Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells. Sci Rep 2017 ; 7 : 41089. [CrossRef] [PubMed] [Google Scholar]
  11. Blanchard E, Roingeard P. The Hepatitis C Virus-Induced Membranous Web in Liver Tissue. Cells 2018 ; 7 : 191. [CrossRef] [PubMed] [Google Scholar]
  12. Andre P, Komurian-Pradel F, Deforges S, et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002 ; 76 : 6919–6928. [CrossRef] [PubMed] [Google Scholar]
  13. Bartenschlager R, Penin F, Lohmann V, et al. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011 ; 19 : 95–103. [CrossRef] [PubMed] [Google Scholar]
  14. Scholtes C, Ramiere C, Rainteau D, et al. High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 2012 ; 56 : 39–48. [CrossRef] [PubMed] [Google Scholar]
  15. Piver E, Boyer A, Gaillard J, et al. Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture. Gut 2017 ; 66 : 1487–1495. [CrossRef] [Google Scholar]
  16. Yang W, Hood BL, Chadwick SL, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008 ; 48 : 1396–1403. [CrossRef] [PubMed] [Google Scholar]
  17. Hajjou M, Norel R, Carver R, et al. cDNA microarray analysis of HBV transgenic mouse liver identifies genes in lipid biosynthetic and growth control pathways affected by HBV. J Med Virol 2005 ; 77 : 57–65. [CrossRef] [PubMed] [Google Scholar]
  18. Wu Y-L, Peng X-E, Zhu Y-B, et al. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J Virol 2016 ; 90 : 1729–1740. [CrossRef] [PubMed] [Google Scholar]
  19. Wang M-D, Wu H, Huang S, et al. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget 2016 ; 7 : 6711–6726. [CrossRef] [PubMed] [Google Scholar]
  20. Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 2014 ; 15 : 323–332. [CrossRef] [PubMed] [Google Scholar]
  21. Perrin-Cocon L, Aublin-Gex A, Sestito SE, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci rep 2017 ; 7 : 40791. [CrossRef] [PubMed] [Google Scholar]
  22. Perrin-Cocon L, Aublin-Gex A, Diaz O, et al. Toll-like Receptor 4-Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1alpha and Increased Hexokinase II Expression. J Immunol 2018 ; 201 : 1510–1521. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang Z, Trippler M, Real CI, et al. Hepatitis B Virus Particles Activate Toll-Like Receptor 2 Signaling Initially Upon Infection of Primary Human Hepatocytes. Hepatology 2020; 72 : 829–44. [CrossRef] [PubMed] [Google Scholar]
  24. Li Y-J, Zhu P, Liang Y, et al. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells. World J Gastroenterol 2013 ; 19 : 2262–2269. [CrossRef] [PubMed] [Google Scholar]
  25. Chang S, Dolganiuc A, Szabo G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 2007 ; 82 : 479–487. [CrossRef] [PubMed] [Google Scholar]
  26. Agaugue S, Perrin-Cocon L, andre P, et al. Hepatitis C lipo-Viro-particle from chronically infected patients interferes with TLR4 signaling in dendritic cell. PloS one 2007; 2 : e330. [Google Scholar]
  27. Zhang E, Ma Z, Li Q, et al. TLR2 Stimulation Increases Cellular Metabolism in CD8+ T Cells and Thereby Enhances CD8+ T Cell Activation, Function, and antiviral Activity. J Immunol 2019 ; 203 : 2872–2886. [CrossRef] [PubMed] [Google Scholar]
  28. Israelow B, Narbus CM, Sourisseau M, et al. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology 2014 ; 60 : 1170–1179. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang Z, Filzmayer C, Ni Y, et al. Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes. J Hepatol 2018 ; 69 : 25–35. [CrossRef] [PubMed] [Google Scholar]
  30. Fekete T, Sütö MI, Bencze D, et al. Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Front Immunol 2018 ; 9 : 3070. [CrossRef] [PubMed] [Google Scholar]
  31. Zhang W, Wang G, Xu ZG, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell 2019 ; 178 : 176–89.e15. [CrossRef] [PubMed] [Google Scholar]
  32. Zhou L, He R, Fang P, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun 2021; 12 : 98. [CrossRef] [PubMed] [Google Scholar]
  33. Wei C, Ni C, Song T, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 2010 ; 185 : 1158–1168. [CrossRef] [PubMed] [Google Scholar]
  34. Li K, Foy E, Ferreon JC, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 2005 ; 102 : 2992–2997. [CrossRef] [PubMed] [Google Scholar]
  35. Liu Y, Li J, Chen J, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 2015 ; 89 : 2287–2300. [CrossRef] [PubMed] [Google Scholar]
  36. Ding Q, Cao X, Lu J, et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J Hepatol 2013 ; 59 : 52–58. [CrossRef] [PubMed] [Google Scholar]
  37. Pan Q, de Ruiter PE, Metselaar HJ, et al. Mycophenolic acid augments interferon-stimulated gene expression and inhibits hepatitis C Virus infection in vitro and in vivo. Hepatology 2012 ; 55 : 1673–1683. [CrossRef] [PubMed] [Google Scholar]
  38. Hoffmann H-H, Kunz A, Simon VA, et al. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci U S A 2011 ; 108 : 5777–5782. [CrossRef] [PubMed] [Google Scholar]
  39. Wang Y, Wang W, Xu L, et al. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. antimicrob Agents Chemother 2016 ; 60 : 2834–2848. [CrossRef] [PubMed] [Google Scholar]
  40. Ruan J, Sun S, Cheng X, et al. Mitomycin, 5-fluorouracil, leflunomide, and mycophenolic acid directly promote hepatitis B virus replication and expression in vitro. Virol J 2020; 17 : 89. [CrossRef] [PubMed] [Google Scholar]
  41. Hoppe-Seyler K, Sauer P, Lohrey C, et al. The inhibitors of nucleotide biosynthesis leflunomide, FK778, and mycophenolic acid activate hepatitis B virus replication in vitro. Hepatology 2012 ; 56 : 9–16. [CrossRef] [PubMed] [Google Scholar]
  42. Gong ZJ, De Meyer S, Clarysse C, et al. Mycophenolic acid, an immunosuppressive agent, inhibits HBV replication in vitro. J Viral Hepat 1999 ; 6 : 229–236. [CrossRef] [PubMed] [Google Scholar]
  43. Ben-Ari Z, Zemel R, Tur-Kaspa R. The addition of mycophenolate mofetil for suppressing hepatitis B virus replication in liver recipients who developed lamivudine resistance–no beneficial effect. Transplantation 2001 ; 71 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  44. Verrier ER, Weiss A, Bach C, et al. Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut 2020; 69 : 158–67. [CrossRef] [PubMed] [Google Scholar]
  45. Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012 ; 1 : e00049. [CrossRef] [PubMed] [Google Scholar]
  46. Mouzannar K, Fusil F, Lacombe B, et al. Farnesoid X receptor-alpha is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo. FASEB J 2019 ; 33 : 2472–2483. [CrossRef] [PubMed] [Google Scholar]
  47. Erken R, andre P, Roy E, et al. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study. J Viral Hepat 2021; 28 : 1690–8. [CrossRef] [PubMed] [Google Scholar]
  48. Legrand A-F, Lucifora J, Lacombe B, et al. Farnesoid X receptor alpha ligands inhibit HDV in vitro replication and virion infectivity. Hepatol Commun 2023; 7 : e0078. [PubMed] [Google Scholar]
  49. Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol 2022; 548 : 111618. [CrossRef] [PubMed] [Google Scholar]
  50. Song M, Sun Y, Tian J, et al. Silencing Retinoid X Receptor Alpha Expression Enhances Early-Stage Hepatitis B Virus Infection In Cell Cultures. J Virol 2018 ; 92 : e01771–e01717. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.