Open Access
Issue
Med Sci (Paris)
Volume 39, Number 6-7, Juin-Juillet 2023
Page(s) 515 - 521
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023083
Published online 30 June 2023
  1. Medinger M, Passweg JR. Acute myeloid leukaemia genomics. Br J Haematol 2017 ; 179 : 530–542. [CrossRef] [PubMed] [Google Scholar]
  2. Pollyea DA, Bixby D, Perl A, et al. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Canc Netw 2021; 19 : 16–27. [CrossRef] [PubMed] [Google Scholar]
  3. Oliva EN, Ronnebaum SM, Zaidi O, et al. A systematic literature review of disease burden and clinical efficacy for patients with relapsed or refractory acute myeloid leukemia. Am J Blood Res 2021; 11 : 325–60. [PubMed] [Google Scholar]
  4. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003 ; 4 : 517–529. [CrossRef] [PubMed] [Google Scholar]
  5. Clapham DE. Calcium signaling. Cell 2007 ; 131 : 1047–1058. [CrossRef] [PubMed] [Google Scholar]
  6. Oliveira AG, Guimarães ES, Andrade LMet al. Decoding calcium signaling across the nucleus. Physiology (Bethesda) 2014 ; 29 : 361–368. [PubMed] [Google Scholar]
  7. Patergnani S, Danese A, Bouhamida E, et al. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21. [PubMed] [Google Scholar]
  8. Cabanas H, Harnois T, Magaud Cet al. Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget 2018 ; 9 : 26309–26327. [CrossRef] [PubMed] [Google Scholar]
  9. Kang X, Cui C, Wang C, Wu Get al. CAMKs support development of acute myeloid leukemia. J Hematol Oncol 2018 ; 11 : 30. [CrossRef] [PubMed] [Google Scholar]
  10. Böttcher M, Panagiotidis K, Bruns H, S et al. Bone marrow stroma cells promote induction of a chemoresistant and prognostic unfavorable S100A8/A9high AML cell subset. Blood Adv 2022; 6 : 5685–97. [CrossRef] [PubMed] [Google Scholar]
  11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  12. Chae YK, Dimou A, Pierce S, et al. The effect of calcium channel blockers on the outcome of acute myeloid leukemia. Leuk Lymphoma 2014 ; 55 : 2822–2829. [CrossRef] [PubMed] [Google Scholar]
  13. Chen S-J, Bao L, Keefer K, et al. Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death Dis 2020; 11 : 247. [CrossRef] [PubMed] [Google Scholar]
  14. Zhang H, Yu P, Lin H, et al. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021; 64 : 3976–96. [CrossRef] [PubMed] [Google Scholar]
  15. Wang J-X, Zhang L, Huang Z-W, et al. Aurora kinase inhibitor restrains STAT5-activated leukemic cell proliferation by inducing mitochondrial impairment. J Cell Physiol 2020; 235 : 8358–70. [Google Scholar]
  16. Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007 ; 110 : 2034–2040. [CrossRef] [PubMed] [Google Scholar]
  17. Löwenberg B, Muus P, Ossenkoppele G, et al. Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood 2011 ; 118 : 6030–6036. [CrossRef] [PubMed] [Google Scholar]
  18. Birkenkamp KU, Geugien M, Lemmink HH, et al. Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001 ; 15 : 1923–1931. [CrossRef] [PubMed] [Google Scholar]
  19. Warsch W, Kollmann K, Eckelhart E, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011 ; 117 : 3409–3420. [CrossRef] [PubMed] [Google Scholar]
  20. Hung L-Y, Tseng JT, Lee Y-C, et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008 ; 36 : 4337–4351. [CrossRef] [PubMed] [Google Scholar]
  21. Wang Z, Mi T, Bradley HL, et al. Pimozide and Imipramine Blue Exploit Mitochondrial Vulnerabilities and Reactive Oxygen Species to Cooperatively Target High Risk Acute Myeloid Leukemia. Antioxidants (Basel) 2021; 10. [PubMed] [Google Scholar]
  22. Chen Y, Hui H, Yang H, et al. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood 2013 ; 121 : 3682–3691. [CrossRef] [PubMed] [Google Scholar]
  23. Li H, Xu J, Zhou Y, et al. PLSCR1/IP3R1/Ca(2+) axis contributes to differentiation of primary AML cells induced by wogonoside. Cell Death Dis 2017 ; 8 : e2768. [CrossRef] [PubMed] [Google Scholar]
  24. Shi J, Fu L, Wang W. High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2015 ; 6 : 5299–5309. [CrossRef] [PubMed] [Google Scholar]
  25. Wang W, Xiao J, Adachi M, et al. 4-aminopyridine induces apoptosis of human acute myeloid leukemia cells via increasing [Ca2+]i through P2X7 receptor pathway. Cell Physiol Biochem 2011 ; 28 : 199–208. [CrossRef] [PubMed] [Google Scholar]
  26. Angka L, Lee EA, Rota SG, et al. Glucopsychosine increases cytosolic calcium to induce calpain-mediated apoptosis of acute myeloid leukemia cells. Cancer Lett 2014 ; 348 : 29–37. [CrossRef] [PubMed] [Google Scholar]
  27. Yanamandra N, Buzzeo RW, Gabriel M, et al. Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on Ca2+ influx through plasma membrane Ca2+ channels. J Pharmacol Exp Ther 2011 ; 337 : 636–643. [CrossRef] [PubMed] [Google Scholar]
  28. Diez-Bello R, Jardin I, Salido GM, et al. Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta Mol Cell Res 2017 ; 1864 : 1064–1070. [CrossRef] [PubMed] [Google Scholar]
  29. Manteniotis S, Wojcik S, Göthert JR, et al. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells. Cell Death Discov 2016 ; 2 : 16010. [CrossRef] [PubMed] [Google Scholar]
  30. Yeh Y-C, Parekh AB. CRAC Channels and Ca(2+)-Dependent Gene Expression. In: Kozak JA, Putney JWJ. Calcium Entry Channels in Non-Excitable Cells. Boca Raton (FL): CRC Press/Taylor & Francis, 2018 ; pp. 93–106. [Google Scholar]
  31. He X, Dou A, Feng S, et al. Cyclosporine enhances the sensitivity to lenalidomide in MDS/AML in vitro. Exp Hematol 2020; 86 : 21–7.e2. [CrossRef] [PubMed] [Google Scholar]
  32. Borella G, Da Ros A, Borile G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia. Blood 2021; 138 : 557–70. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.