Open Access
Issue
Med Sci (Paris)
Volume 39, Number 6-7, Juin-Juillet 2023
Page(s) 507 - 514
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023072
Published online 30 June 2023
  1. Pavlov IP. Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann Neurosci 2010 ; 17 : 136–141. [CrossRef] [PubMed] [Google Scholar]
  2. Thorndike EL. The Fundamentals of Learning. American Psychological Association, 1932. https://www.apa.org. [Google Scholar]
  3. Skinner BF. The behavior of organisms: an experimental analysis. Oxford, England: Appleton-Century, 1938 : 457 p [Google Scholar]
  4. Tolman EC, Honzik CH. Degrees of hunger, reward and non-reward, and maze learning in rats. Univ Calif Publ Psychol 1930 ; 4 : 241–256. [Google Scholar]
  5. Tolman EC, Ritchie BF, Kalish D. Studies in spatial learning: Orientation and the short-cut. J Exp Psychol 1946 ; 36 : 13–24. [Google Scholar]
  6. Douglas RJ. The hippocampus and behavior. Psychol Bull 1967 ; 67 : 416–442. [CrossRef] [PubMed] [Google Scholar]
  7. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971 ; 34 : 171–175. [CrossRef] [PubMed] [Google Scholar]
  8. Muller R, Kubie J. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 1987 ; 7 : 1951–1968. [CrossRef] [PubMed] [Google Scholar]
  9. Wills TJ, Lever C, Cacucci Fet al. Attractor Dynamics in the Hippocampal Representation of the Local Environment. Science 2005 ; 308 : 873–876. [CrossRef] [PubMed] [Google Scholar]
  10. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus 1994 ; 4 : 374–391. [CrossRef] [PubMed] [Google Scholar]
  11. McNaughton BL, Barnes CA, Meltzer Jet al. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp Brain Res 1989 ; 76 : 485–496. [CrossRef] [PubMed] [Google Scholar]
  12. Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 2002 ; 296 : 2243–2246. [CrossRef] [PubMed] [Google Scholar]
  13. Save E, Sargolini F. Disentangling the Role of the MEC and LEC in the Processing of Spatial and Non-Spatial Information: Contribution of Lesion Studies. Front Syst Neurosci 2017; 11. [PubMed] [Google Scholar]
  14. Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex. Science 2004 ; 305 : 1258–1264. [CrossRef] [PubMed] [Google Scholar]
  15. Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature 2005 ; 436 : 801–806. [CrossRef] [PubMed] [Google Scholar]
  16. Van Cauter T, Poucet B, Save E. Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur J Neurosci 2008 ; 27 : 1933–1946. [CrossRef] [PubMed] [Google Scholar]
  17. Stensola H, Stensola T, Solstad T, et al. The entorhinal grid map is discretized. Nature 2012 ; 492 : 72–78. [CrossRef] [PubMed] [Google Scholar]
  18. Gu Y, Lewallen S, Kinkhabwala AA, et al. A Map-like Micro-Organization of Grid Cells in the Medial Entorhinal Cortex. Cell 2018 ; 175 : 736–50.e30. [CrossRef] [PubMed] [Google Scholar]
  19. Fiete IR, Burak Y, Brookings T. What Grid Cells Convey about Rat Location. J Neurosci 2008 ; 28 : 6858–6871. [CrossRef] [PubMed] [Google Scholar]
  20. Moser M-B, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol 2015 ; 7 : a021808. [CrossRef] [PubMed] [Google Scholar]
  21. Hales JB, Schlesiger MI, Leutgeb JK, et al. Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep 2014 ; 9 : 893–901. [CrossRef] [PubMed] [Google Scholar]
  22. Schlesiger MI, Cannova CC, Boublil BL, et al. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nat Neurosci 2015 ; 18 : 1123–1132. [CrossRef] [PubMed] [Google Scholar]
  23. Schlesiger MI, Boublil BL, Hales JB, et al. Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex. Cell Rep 2018 ; 22 : 3152–3159. [CrossRef] [PubMed] [Google Scholar]
  24. Bonnevie T, Dunn B, Fyhn M, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci 2013 ; 16 : 309–317. [CrossRef] [PubMed] [Google Scholar]
  25. Rennó-Costa C, Tort ABL. Place and Grid Cells in a Loop: Implications for Memory Function and Spatial Coding. J Neurosci 2017 ; 37 : 8062–8076. [CrossRef] [PubMed] [Google Scholar]
  26. Morris G, Derdikman D. The chicken and egg problem of grid cells and place cells. Trends Cogn Sci 2023; 27 : 125–38. [CrossRef] [PubMed] [Google Scholar]
  27. Bellmund JLS, Gärdenfors P, Moser EI, et al. Navigating cognition: Spatial codes for human thinking. Science 2018; 362 : eaat6766. [CrossRef] [PubMed] [Google Scholar]
  28. Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 1990 ; 10 : 420–435. [CrossRef] [PubMed] [Google Scholar]
  29. Solstad T, Boccara CN, Kropff E, et al. Representation of Geometric Borders in the Entorhinal Cortex. Science 2008 ; 322 : 1865–1868. [CrossRef] [PubMed] [Google Scholar]
  30. Kropff E, Carmichael JE, Moser M-B, et al. Speed cells in the medial entorhinal cortex. Nature 2015 ; 523 : 419–424. [CrossRef] [PubMed] [Google Scholar]
  31. Hebb DO. The organization of behavior; a neuropsychological theory. Oxford, England : Wiley, 1949 : xix, 335 pp. [Google Scholar]
  32. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973 ; 232 : 331–356. [CrossRef] [PubMed] [Google Scholar]
  33. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001 ; 294 : 1030–1038. [CrossRef] [PubMed] [Google Scholar]
  34. Citri A, Malenka RC. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008 ; 33 : 18–41. [CrossRef] [PubMed] [Google Scholar]
  35. Martin SJ, Grimwood PD, Morris RGM. Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annu Rev Neurosci 2000 ; 23 : 649–711. [CrossRef] [PubMed] [Google Scholar]
  36. Alvarez P, Squire LR. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 1994 ; 91 : 7041–7045. [CrossRef] [PubMed] [Google Scholar]
  37. Nadel L, Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 1997 ; 7 : 217–227. [CrossRef] [PubMed] [Google Scholar]
  38. Eichenbaum H, Cohen NJ. Can we reconcile the declarative memory and spatial navigation views on hippocampal function?. Neuron 2014 ; 83 : 764–770. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.