Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 6-7, Juin-Juillet 2023
Page(s) 515 - 521
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023083
Publié en ligne 30 juin 2023
  1. Medinger M, Passweg JR. Acute myeloid leukaemia genomics. Br J Haematol 2017 ; 179 : 530–542. [CrossRef] [PubMed] [Google Scholar]
  2. Pollyea DA, Bixby D, Perl A, et al. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Canc Netw 2021; 19 : 16–27. [CrossRef] [PubMed] [Google Scholar]
  3. Oliva EN, Ronnebaum SM, Zaidi O, et al. A systematic literature review of disease burden and clinical efficacy for patients with relapsed or refractory acute myeloid leukemia. Am J Blood Res 2021; 11 : 325–60. [PubMed] [Google Scholar]
  4. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003 ; 4 : 517–529. [CrossRef] [PubMed] [Google Scholar]
  5. Clapham DE. Calcium signaling. Cell 2007 ; 131 : 1047–1058. [CrossRef] [PubMed] [Google Scholar]
  6. Oliveira AG, Guimarães ES, Andrade LMet al. Decoding calcium signaling across the nucleus. Physiology (Bethesda) 2014 ; 29 : 361–368. [PubMed] [Google Scholar]
  7. Patergnani S, Danese A, Bouhamida E, et al. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21. [PubMed] [Google Scholar]
  8. Cabanas H, Harnois T, Magaud Cet al. Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget 2018 ; 9 : 26309–26327. [CrossRef] [PubMed] [Google Scholar]
  9. Kang X, Cui C, Wang C, Wu Get al. CAMKs support development of acute myeloid leukemia. J Hematol Oncol 2018 ; 11 : 30. [CrossRef] [PubMed] [Google Scholar]
  10. Böttcher M, Panagiotidis K, Bruns H, S et al. Bone marrow stroma cells promote induction of a chemoresistant and prognostic unfavorable S100A8/A9high AML cell subset. Blood Adv 2022; 6 : 5685–97. [CrossRef] [PubMed] [Google Scholar]
  11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  12. Chae YK, Dimou A, Pierce S, et al. The effect of calcium channel blockers on the outcome of acute myeloid leukemia. Leuk Lymphoma 2014 ; 55 : 2822–2829. [CrossRef] [PubMed] [Google Scholar]
  13. Chen S-J, Bao L, Keefer K, et al. Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death Dis 2020; 11 : 247. [CrossRef] [PubMed] [Google Scholar]
  14. Zhang H, Yu P, Lin H, et al. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021; 64 : 3976–96. [CrossRef] [PubMed] [Google Scholar]
  15. Wang J-X, Zhang L, Huang Z-W, et al. Aurora kinase inhibitor restrains STAT5-activated leukemic cell proliferation by inducing mitochondrial impairment. J Cell Physiol 2020; 235 : 8358–70. [Google Scholar]
  16. Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007 ; 110 : 2034–2040. [CrossRef] [PubMed] [Google Scholar]
  17. Löwenberg B, Muus P, Ossenkoppele G, et al. Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood 2011 ; 118 : 6030–6036. [CrossRef] [PubMed] [Google Scholar]
  18. Birkenkamp KU, Geugien M, Lemmink HH, et al. Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001 ; 15 : 1923–1931. [CrossRef] [PubMed] [Google Scholar]
  19. Warsch W, Kollmann K, Eckelhart E, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011 ; 117 : 3409–3420. [CrossRef] [PubMed] [Google Scholar]
  20. Hung L-Y, Tseng JT, Lee Y-C, et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008 ; 36 : 4337–4351. [CrossRef] [PubMed] [Google Scholar]
  21. Wang Z, Mi T, Bradley HL, et al. Pimozide and Imipramine Blue Exploit Mitochondrial Vulnerabilities and Reactive Oxygen Species to Cooperatively Target High Risk Acute Myeloid Leukemia. Antioxidants (Basel) 2021; 10. [PubMed] [Google Scholar]
  22. Chen Y, Hui H, Yang H, et al. Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood 2013 ; 121 : 3682–3691. [CrossRef] [PubMed] [Google Scholar]
  23. Li H, Xu J, Zhou Y, et al. PLSCR1/IP3R1/Ca(2+) axis contributes to differentiation of primary AML cells induced by wogonoside. Cell Death Dis 2017 ; 8 : e2768. [CrossRef] [PubMed] [Google Scholar]
  24. Shi J, Fu L, Wang W. High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2015 ; 6 : 5299–5309. [CrossRef] [PubMed] [Google Scholar]
  25. Wang W, Xiao J, Adachi M, et al. 4-aminopyridine induces apoptosis of human acute myeloid leukemia cells via increasing [Ca2+]i through P2X7 receptor pathway. Cell Physiol Biochem 2011 ; 28 : 199–208. [CrossRef] [PubMed] [Google Scholar]
  26. Angka L, Lee EA, Rota SG, et al. Glucopsychosine increases cytosolic calcium to induce calpain-mediated apoptosis of acute myeloid leukemia cells. Cancer Lett 2014 ; 348 : 29–37. [CrossRef] [PubMed] [Google Scholar]
  27. Yanamandra N, Buzzeo RW, Gabriel M, et al. Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on Ca2+ influx through plasma membrane Ca2+ channels. J Pharmacol Exp Ther 2011 ; 337 : 636–643. [CrossRef] [PubMed] [Google Scholar]
  28. Diez-Bello R, Jardin I, Salido GM, et al. Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta Mol Cell Res 2017 ; 1864 : 1064–1070. [CrossRef] [PubMed] [Google Scholar]
  29. Manteniotis S, Wojcik S, Göthert JR, et al. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells. Cell Death Discov 2016 ; 2 : 16010. [CrossRef] [PubMed] [Google Scholar]
  30. Yeh Y-C, Parekh AB. CRAC Channels and Ca(2+)-Dependent Gene Expression. In: Kozak JA, Putney JWJ. Calcium Entry Channels in Non-Excitable Cells. Boca Raton (FL): CRC Press/Taylor & Francis, 2018 ; pp. 93–106. [Google Scholar]
  31. He X, Dou A, Feng S, et al. Cyclosporine enhances the sensitivity to lenalidomide in MDS/AML in vitro. Exp Hematol 2020; 86 : 21–7.e2. [CrossRef] [PubMed] [Google Scholar]
  32. Borella G, Da Ros A, Borile G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia. Blood 2021; 138 : 557–70. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.