Open Access
Issue |
Med Sci (Paris)
Volume 39, Number 6-7, Juin-Juillet 2023
|
|
---|---|---|
Page(s) | 530 - 536 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023084 | |
Published online | 30 June 2023 |
- Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
- Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012 ; 148 : 112–125. [CrossRef] [PubMed] [Google Scholar]
- Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007 ; 129 : 999–1010. [CrossRef] [PubMed] [Google Scholar]
- Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell 2020; 11 : 34–44. [CrossRef] [PubMed] [Google Scholar]
- Rodgers JT, King KY, Brett JO, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 2014 ; 510 : 393–396. [CrossRef] [PubMed] [Google Scholar]
- Brun CE, Sincennes MC, Lin AYT, et al. GLI3 regulates muscle stem cell entry into G(Alert) and self-renewal. Nat Commun 2022; 13 : 3961. [CrossRef] [PubMed] [Google Scholar]
- Ryall JG, Dell’Orso S, Derfoul A, et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015 ; 16 : 171–183. [CrossRef] [PubMed] [Google Scholar]
- Cerletti M, Jang YC, Finley LW, et al. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012 ; 10 : 515–519. [CrossRef] [PubMed] [Google Scholar]
- Pala F, Di Girolamo D, Mella S, et al. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci 2018 ; 131 [Google Scholar]
- Garcia-Prat L, Martinez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016 ; 529 : 37–42. [CrossRef] [PubMed] [Google Scholar]
- Tang AH, Rando TA. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO 2014 ; 33 : 2782–2797. [CrossRef] [PubMed] [Google Scholar]
- Blanco E, González-Ramírez M, Alcaine-Colet A, et al. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2020; 36 : 118–31. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Cheung TH, Charville GW, et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 2013 ; 4 : 189–204. [CrossRef] [PubMed] [Google Scholar]
- Eminli S, Foudi A, Stadtfeld M, et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009 ; 41 : 968–976. [CrossRef] [PubMed] [Google Scholar]
- Tan KY, Eminli S, Hettmer S, et al. Efficient generation of iPS cells from skeletal muscle stem cells. PLoS One 2011 ; 6 : e26406. [CrossRef] [PubMed] [Google Scholar]
- Yucel N, Wang YX, Mai T, et al. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep 2019 ; 27 : 3939–55.e6 [CrossRef] [PubMed] [Google Scholar]
- Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 2020; 38 : 100941. [CrossRef] [PubMed] [Google Scholar]
- Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009 ; 324 : 1076–1080. [CrossRef] [PubMed] [Google Scholar]
- Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000 ; 403 : 795–800. [CrossRef] [PubMed] [Google Scholar]
- Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004 ; 16 : 93–105. [CrossRef] [PubMed] [Google Scholar]
- Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO 2007 ; 26 : 1913–1923. [CrossRef] [PubMed] [Google Scholar]
- Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008 ; 283 : 27628–27635. [CrossRef] [PubMed] [Google Scholar]
- Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 2012 ; 427 : 191–196. [CrossRef] [PubMed] [Google Scholar]
- Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011 ; 331 : 456–461. [CrossRef] [PubMed] [Google Scholar]
- Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011 ; 13 : 132–141. [CrossRef] [PubMed] [Google Scholar]
- Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010 ; 5 : e9199. [CrossRef] [PubMed] [Google Scholar]
- Hong S, Zhao B, Lombard DB, et al. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 2014 ; 289 : 13132–13141. [CrossRef] [PubMed] [Google Scholar]
- Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 2006 ; 311 : 844–847. [CrossRef] [PubMed] [Google Scholar]
- Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002 ; 32 : 378–383. [CrossRef] [PubMed] [Google Scholar]
- Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002 ; 32 : 370–377. [CrossRef] [PubMed] [Google Scholar]
- Taylor GC, Eskeland R, Hekimoglu-Balkan B, et al. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res 2013 ; 23 : 2053–2065. [CrossRef] [PubMed] [Google Scholar]
- Zhang H, Ryu D, Wu Y, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016 ; 352 : 1436–1443. [CrossRef] [PubMed] [Google Scholar]
- Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013 ; 155 : 1624–1638. [CrossRef] [PubMed] [Google Scholar]
- Mayeuf A, Relaix F. La voie Notch-Du développement à la régénération du muscle squelettique. Med Sci (Paris) 2011 ; 27 : 521–526. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Mayeuf-Louchart A. L’horloge biologique du muscle. Med Sci (Paris) 2020; 36 Hors série n° 2 : 10–2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Guillaumond F, Delaunay F, Teboul M. À l’heure de SIRT1. Med Sci (Paris) 2009 ; 25 : 136–137. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Di Francesco A, Di Germanio C, Bernier M, de Cabo RA time to fast. Science 2018 ; 362 : 770–775. [Google Scholar]
- Boldrin L, Ross JA, Whitmore C, et al. The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017 ; 7 : 5160. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.