Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 6-7, Juin-Juillet 2023
Page(s) 530 - 536
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023084
Publié en ligne 30 juin 2023
  1. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
  2. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012 ; 148 : 112–125. [CrossRef] [PubMed] [Google Scholar]
  3. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007 ; 129 : 999–1010. [CrossRef] [PubMed] [Google Scholar]
  4. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell 2020; 11 : 34–44. [CrossRef] [PubMed] [Google Scholar]
  5. Rodgers JT, King KY, Brett JO, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 2014 ; 510 : 393–396. [CrossRef] [PubMed] [Google Scholar]
  6. Brun CE, Sincennes MC, Lin AYT, et al. GLI3 regulates muscle stem cell entry into G(Alert) and self-renewal. Nat Commun 2022; 13 : 3961. [CrossRef] [PubMed] [Google Scholar]
  7. Ryall JG, Dell’Orso S, Derfoul A, et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015 ; 16 : 171–183. [CrossRef] [PubMed] [Google Scholar]
  8. Cerletti M, Jang YC, Finley LW, et al. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012 ; 10 : 515–519. [CrossRef] [PubMed] [Google Scholar]
  9. Pala F, Di Girolamo D, Mella S, et al. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci 2018 ; 131 [Google Scholar]
  10. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016 ; 529 : 37–42. [CrossRef] [PubMed] [Google Scholar]
  11. Tang AH, Rando TA. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO 2014 ; 33 : 2782–2797. [CrossRef] [PubMed] [Google Scholar]
  12. Blanco E, González-Ramírez M, Alcaine-Colet A, et al. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2020; 36 : 118–31. [CrossRef] [PubMed] [Google Scholar]
  13. Liu L, Cheung TH, Charville GW, et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 2013 ; 4 : 189–204. [CrossRef] [PubMed] [Google Scholar]
  14. Eminli S, Foudi A, Stadtfeld M, et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009 ; 41 : 968–976. [CrossRef] [PubMed] [Google Scholar]
  15. Tan KY, Eminli S, Hettmer S, et al. Efficient generation of iPS cells from skeletal muscle stem cells. PLoS One 2011 ; 6 : e26406. [CrossRef] [PubMed] [Google Scholar]
  16. Yucel N, Wang YX, Mai T, et al. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep 2019 ; 27 : 3939–55.e6 [CrossRef] [PubMed] [Google Scholar]
  17. Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 2020; 38 : 100941. [CrossRef] [PubMed] [Google Scholar]
  18. Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009 ; 324 : 1076–1080. [CrossRef] [PubMed] [Google Scholar]
  19. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000 ; 403 : 795–800. [CrossRef] [PubMed] [Google Scholar]
  20. Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004 ; 16 : 93–105. [CrossRef] [PubMed] [Google Scholar]
  21. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO 2007 ; 26 : 1913–1923. [CrossRef] [PubMed] [Google Scholar]
  22. Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008 ; 283 : 27628–27635. [CrossRef] [PubMed] [Google Scholar]
  23. Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 2012 ; 427 : 191–196. [CrossRef] [PubMed] [Google Scholar]
  24. Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011 ; 331 : 456–461. [CrossRef] [PubMed] [Google Scholar]
  25. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011 ; 13 : 132–141. [CrossRef] [PubMed] [Google Scholar]
  26. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010 ; 5 : e9199. [CrossRef] [PubMed] [Google Scholar]
  27. Hong S, Zhao B, Lombard DB, et al. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 2014 ; 289 : 13132–13141. [CrossRef] [PubMed] [Google Scholar]
  28. Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 2006 ; 311 : 844–847. [CrossRef] [PubMed] [Google Scholar]
  29. Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002 ; 32 : 378–383. [CrossRef] [PubMed] [Google Scholar]
  30. Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002 ; 32 : 370–377. [CrossRef] [PubMed] [Google Scholar]
  31. Taylor GC, Eskeland R, Hekimoglu-Balkan B, et al. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res 2013 ; 23 : 2053–2065. [CrossRef] [PubMed] [Google Scholar]
  32. Zhang H, Ryu D, Wu Y, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016 ; 352 : 1436–1443. [CrossRef] [PubMed] [Google Scholar]
  33. Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013 ; 155 : 1624–1638. [CrossRef] [PubMed] [Google Scholar]
  34. Mayeuf A, Relaix F. La voie Notch-Du développement à la régénération du muscle squelettique. Med Sci (Paris) 2011 ; 27 : 521–526. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Mayeuf-Louchart A. L’horloge biologique du muscle. Med Sci (Paris) 2020; 36 Hors série n° 2 : 10–2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Guillaumond F, Delaunay F, Teboul M. À l’heure de SIRT1. Med Sci (Paris) 2009 ; 25 : 136–137. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Di Francesco A, Di Germanio C, Bernier M, de Cabo RA time to fast. Science 2018 ; 362 : 770–775. [Google Scholar]
  38. Boldrin L, Ross JA, Whitmore C, et al. The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017 ; 7 : 5160. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.