Open Access
Issue
Med Sci (Paris)
Volume 39, Number 6-7, Juin-Juillet 2023
Page(s) 537 - 543
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023082
Published online 30 June 2023
  1. Lun MP, Johnson MB, Broadbelt KG, et al. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 2015 ; 35 : 4903–4916. [CrossRef] [PubMed] [Google Scholar]
  2. Dani N, Herbst RH, McCabe C, et al. A Cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 2021; 184 : 3056–74.e21. [CrossRef] [PubMed] [Google Scholar]
  3. Orts-Del’Immagine A, Wyart C. Cerebrospinal-fluid-contacting neurons. Curr Biol 2017; 27 : R1198–200. [CrossRef] [PubMed] [Google Scholar]
  4. Reissner E.. Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis L. Arch Anat Physiol Wiss Med 1860 ; 545–588. [Google Scholar]
  5. Muñoz RI, Kähne T, Herrera H, et al. The subcommissural organ and the Reissner fiber : old friends revisited. Cell Tissue Res 2019 ; 375 : 507–529. [CrossRef] [PubMed] [Google Scholar]
  6. Cantaut-Belarif Y, Sternberg JR, Thouvenin O, et al. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol 2018 ; 28 : 2479–86.e2474. [CrossRef] [PubMed] [Google Scholar]
  7. Troutwine BR, Gontarz P, Konjikusic MJ, et al. The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr Biol 2020; 30 : 2353–62.e2353. [CrossRef] [PubMed] [Google Scholar]
  8. Rose CD, Pompili D, Henke K, et al. SCO-Spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr Biol 2020; 30 : 2363–73.e2366. [CrossRef] [PubMed] [Google Scholar]
  9. Jalalvand E, Robertson B, Wallén P, Grillner S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 2016 ; 7 : 10002. [CrossRef] [PubMed] [Google Scholar]
  10. Böhm UL, Prendergast AE, Djenoune L, et al. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nature Comm 2016 ; 7 : 10866. [CrossRef] [Google Scholar]
  11. Orts-Del’Immagine A, Cantaut-Belarif Y, Thouvenin O, et al. Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo. Curr Biology 2020; 30 : 827–39.e4. [CrossRef] [Google Scholar]
  12. Huang AL, Chen X, Hoon MA, et al. The cells and logic for mammalian sour taste detection. Nature 2006 ; 442 : 934–938. [CrossRef] [PubMed] [Google Scholar]
  13. Orts-Del’Immagine A, Wanaverbecq N, Tardivel C, et al. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J Physiol 2012; 590 : 3719–41. [CrossRef] [PubMed] [Google Scholar]
  14. Jalalvand E, Robertson B, Tostivint H, et al. The spinal cord has an intrinsic system for the control of pH. Curr Biology 2016 ; 26 : 1346–1351. [CrossRef] [Google Scholar]
  15. Vigh-Teichmann O, Vigh B. The system of cerebrospinal fluid-contacting neurons. Archivum Histologicum Japonicum 1983 ; 46 : 427–468. [CrossRef] [PubMed] [Google Scholar]
  16. Quan FB, Dubessy C, Galant S, et al. Comparative distribution and in vitro activities of the Urotensin II-related peptides URP1 and URP2 in Zebrafish: Evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons. Plos One 2015 ; 10 : e0119290. [CrossRef] [PubMed] [Google Scholar]
  17. Prendergast AE, Jim KK, Marnas H, et al. CSF-contacting neurons respond to Streptococcus Pneumoniae and promote host survival during central nervous system infection. Curr Biology 2023; 33 : 940–56.e10. [CrossRef] [Google Scholar]
  18. Fidelin K, Djenoune L, Stokes C, et al. State-dependent modulation of locomotion by GABAergic spinal sensory neurons. Curr Biology 2015 ; 25 : 3035–3047. [CrossRef] [Google Scholar]
  19. Hubbard JM, Böhm UL, Prendergast AE, et al. Intraspinal sensory neurons provide powerful inhibition to motor circuits ensuring postural control during locomotion. Curr Biology 2016 ; 26 : 2841–2853. [CrossRef] [Google Scholar]
  20. Wu MY, Carbo-Tano M, Mirat O, et al. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biology 2021; 31 : 3315–29.e5. [CrossRef] [Google Scholar]
  21. Zhang X, Jia S, Chen Z, et al. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet 2018 ; 50 : 1666–1673. [CrossRef] [PubMed] [Google Scholar]
  22. Gaillard AL, Mohamad T, Quan FB, et al. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev Biology 2023; S0012–1606(23)00018–0. [Google Scholar]
  23. Bearce EA, Irons ZH, O’Hara-Smith JR, et al. Urotensin II-related peptides, Urp1 and Urp2, control Zebrafish spine morphology. eLife 2022; 11 : e83883. [CrossRef] [PubMed] [Google Scholar]
  24. Djenoune L, Khabou H, Joubert F, et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: Evidence for a conserved system from fish to primates. Front Neuroanatomy 2014 ; 8 : 26. [CrossRef] [Google Scholar]
  25. Bushman JD, Ye W, Liman ER. A proton current associated with sour taste : distribution and functional properties. FASEB 2015 ; 29 : 3014–3026. [CrossRef] [PubMed] [Google Scholar]
  26. Sternberg JR, Prendergast AE, Brosse L, et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun 2018 ; 9 : 3804. [CrossRef] [PubMed] [Google Scholar]
  27. Gerstmann K, Jurcˇic΄ N, Blasco E, et al. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr Biology 2022; 32 : 2442–53.e4. [CrossRef] [Google Scholar]
  28. Cantaut-Belarif Y, Orts Del’Immagine A, Penru M, et al. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. eLife 2020; 9 : e59469. [CrossRef] [PubMed] [Google Scholar]
  29. Lu H, Shagirova A, Goggi JL, et al. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol Open 2020; 9 : bio052027. [CrossRef] [PubMed] [Google Scholar]
  30. Dai Z, Wang Y, Wu Z, et al. Novel Mutations in UTS2R are associated with adolescent idiopathic scoliosis in the chinese population. Spine 2021; 46 : E288–93. [CrossRef] [PubMed] [Google Scholar]
  31. Xie H, Kang Y, Liu J, et al. Ependymal polarity defects coupled with disorganized ciliary beating drive abnormal cerebrospinal fluid flow and spine curvature in zebrafish. Plos Biol 2023; 21 : e3002008. [CrossRef] [PubMed] [Google Scholar]
  32. Wyart C, Del Bene F, Warp E, et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 2009 ; 461 : 407–410. [CrossRef] [PubMed] [Google Scholar]
  33. Quan FB, Desban L, Mirat O, et al. Somatostatin 1.1 contributes to the innate exploration of Zebrafish larva. Sci Rep 2020; 10 : 15235. [CrossRef] [PubMed] [Google Scholar]
  34. Nakamura Y, Kurabe M, Matsumoto M, et al. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. eLife 2023 : 12 : e83108. [CrossRef] [PubMed] [Google Scholar]
  35. Djenoune L, Desban L, Gomez J, et al. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 2017 ; 7 : 719. [CrossRef] [PubMed] [Google Scholar]
  36. Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017 ; 31 : 113–127. [CrossRef] [PubMed] [Google Scholar]
  37. Jaeger CB, Teitelman G, Joh TH, et al. Some neurons of the rat central nervous system contain aromatic-L-amino-acid decarboxylase but not monoamines. Science 1983 ; 219 : 1233–1235. [CrossRef] [PubMed] [Google Scholar]
  38. Nagatsu I, Sakai M, Yoshida M, Nagatsu T. Aromatic L-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord. Brain Research 1988 ; 475 : 91–102. [CrossRef] [PubMed] [Google Scholar]
  39. Shimosegawa T, Koizumi M, Toyota T, et al. An immunohistochemical study of Methionine-Enkephalin-Arg6-Gly7-Leu8-like immunoreactivity-containing liquor-contacting neurons (LCNs) in the rat spinal cord. Brain Research 1986 ; 379 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  40. Lamotte CC. Vasoactive intestinal polypeptide cerebrospinal fluid-contacting neurons of the monkey and cat spinal central canal. J Comp Neurol 1987; 258 : 527–41. [Google Scholar]
  41. MacCain W, Tuomanen E. Taste versus pain: A sensory feast in bacterial meningitis. Cell Host Microbe 2023; 31 : 681–2. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.