Free Access
Issue
Med Sci (Paris)
Volume 39, Number 4, Avril 2023
Page(s) 322 - 325
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2023039
Published online 24 April 2023
  1. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol 2014 ; 32 : 513–545. [CrossRef] [PubMed] [Google Scholar]
  2. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011 ; 30 : 16–34. [CrossRef] [PubMed] [Google Scholar]
  3. Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol 2012 ; 13 : 214–222. [CrossRef] [PubMed] [Google Scholar]
  4. Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity 2011 ; 34 : 680–692. [CrossRef] [PubMed] [Google Scholar]
  5. Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who’s interfering with whom?. Nat Rev Microbiol 2015 ; 13 : 403–413. [CrossRef] [PubMed] [Google Scholar]
  6. Schoggins JW. Interferon-stimulated genes: What do they all do?. Annu Rev Virol 2019 ; 6 : 567–584. [CrossRef] [PubMed] [Google Scholar]
  7. Bonaventure B, Rebendenne A, Chaves Valadão AL, et al. The DEAD box RNA helicase DDX42 is an intrinsic inhibitor of positive-strand RNA viruses. EMBO Rep 2022; 23 : e54061. [CrossRef] [PubMed] [Google Scholar]
  8. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 ; 343 : 84–87. [CrossRef] [PubMed] [Google Scholar]
  9. Fairman-Williams ME, Guenther U-P, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010 ; 20 : 313–324. [CrossRef] [PubMed] [Google Scholar]
  10. Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016 ; 17 : 426–438. [CrossRef] [PubMed] [Google Scholar]
  11. Will CL, Urlaub H, Achsel T, et al. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 2002 ; 21 : 4978–4988. [CrossRef] [PubMed] [Google Scholar]
  12. Uhlmann-Schiffler H, Jalal C, Stahl H. Ddx42p: a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 2006 ; 34 : 10–22. [CrossRef] [PubMed] [Google Scholar]
  13. Goodier JL. Restricting retrotransposons: a review. Mob. DNA 2016 ; 7 : 16. [Google Scholar]
  14. Eickbush TH, Malik HS. Origins and evolution of retrotransposons. Mob DNA II 2002 ; 1111–1144. [Google Scholar]
  15. Moy RH, Cole BS, Yasunaga A, et al. Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell 2014 ; 158 : 764–777. [CrossRef] [PubMed] [Google Scholar]
  16. Taschuk F, Tapescu I, Moy RH, et al. DDX56 binds to Chikungunya virus RNA to control infection. mBio 2020; 11 : e02623–20. [CrossRef] [PubMed] [Google Scholar]
  17. Zyner KG, Mulhearn DS, Adhikari S, et al. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8 : e46793. [CrossRef] [PubMed] [Google Scholar]
  18. Lipps HJ, Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 2009 ; 19 : 414–422. [CrossRef] [PubMed] [Google Scholar]
  19. Lavezzo E, Berselli M, Frasson I, et al. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput Biol 2018 ; 14 : e1006675. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.