Accès gratuit
Numéro |
Med Sci (Paris)
Volume 39, Numéro 4, Avril 2023
|
|
---|---|---|
Page(s) | 322 - 325 | |
Section | Nouvelles | |
DOI | https://doi.org/10.1051/medsci/2023039 | |
Publié en ligne | 24 avril 2023 |
- Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol 2014 ; 32 : 513–545. [CrossRef] [PubMed] [Google Scholar]
- Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011 ; 30 : 16–34. [CrossRef] [PubMed] [Google Scholar]
- Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol 2012 ; 13 : 214–222. [CrossRef] [PubMed] [Google Scholar]
- Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity 2011 ; 34 : 680–692. [CrossRef] [PubMed] [Google Scholar]
- Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who’s interfering with whom?. Nat Rev Microbiol 2015 ; 13 : 403–413. [CrossRef] [PubMed] [Google Scholar]
- Schoggins JW. Interferon-stimulated genes: What do they all do?. Annu Rev Virol 2019 ; 6 : 567–584. [CrossRef] [PubMed] [Google Scholar]
- Bonaventure B, Rebendenne A, Chaves Valadão AL, et al. The DEAD box RNA helicase DDX42 is an intrinsic inhibitor of positive-strand RNA viruses. EMBO Rep 2022; 23 : e54061. [CrossRef] [PubMed] [Google Scholar]
- Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 ; 343 : 84–87. [CrossRef] [PubMed] [Google Scholar]
- Fairman-Williams ME, Guenther U-P, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010 ; 20 : 313–324. [CrossRef] [PubMed] [Google Scholar]
- Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016 ; 17 : 426–438. [CrossRef] [PubMed] [Google Scholar]
- Will CL, Urlaub H, Achsel T, et al. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 2002 ; 21 : 4978–4988. [CrossRef] [PubMed] [Google Scholar]
- Uhlmann-Schiffler H, Jalal C, Stahl H. Ddx42p: a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 2006 ; 34 : 10–22. [CrossRef] [PubMed] [Google Scholar]
- Goodier JL. Restricting retrotransposons: a review. Mob. DNA 2016 ; 7 : 16. [Google Scholar]
- Eickbush TH, Malik HS. Origins and evolution of retrotransposons. Mob DNA II 2002 ; 1111–1144. [Google Scholar]
- Moy RH, Cole BS, Yasunaga A, et al. Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell 2014 ; 158 : 764–777. [CrossRef] [PubMed] [Google Scholar]
- Taschuk F, Tapescu I, Moy RH, et al. DDX56 binds to Chikungunya virus RNA to control infection. mBio 2020; 11 : e02623–20. [CrossRef] [PubMed] [Google Scholar]
- Zyner KG, Mulhearn DS, Adhikari S, et al. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8 : e46793. [CrossRef] [PubMed] [Google Scholar]
- Lipps HJ, Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 2009 ; 19 : 414–422. [CrossRef] [PubMed] [Google Scholar]
- Lavezzo E, Berselli M, Frasson I, et al. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput Biol 2018 ; 14 : e1006675. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.