Free Access
Issue |
Med Sci (Paris)
Volume 39, Number 4, Avril 2023
|
|
---|---|---|
Page(s) | 344 - 350 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023051 | |
Published online | 24 April 2023 |
- Moelling K, Broecker F. Viroids and the Origin of Life. IJMS 2021; 22 : 3476. [CrossRef] [Google Scholar]
- Diener TO. Potato spindle tuber “virus”. Virology 1971 ; 45 : 411–428. [CrossRef] [Google Scholar]
- Singh R, Finnie R, Bagnall R. Losses due to the potato spindle tuber virus. American Potato Journal 1971 ; 48 : 262–267. [CrossRef] [Google Scholar]
- Sastry KS. Plant virus and viroid diseases in the tropics. Dordrecht New York: Springer, 2013 : 361 p. [CrossRef] [Google Scholar]
- Berget SM, Moore C, Sharp PA. Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 1977 ; 74 : 3171–3175. [CrossRef] [PubMed] [Google Scholar]
- Black DL. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annu Rev Biochem 2003 ; 72 : 291–336. [CrossRef] [PubMed] [Google Scholar]
- Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019 ; 20 : 675–691. [CrossRef] [PubMed] [Google Scholar]
- Ladet J, Mortreux F. Les ARN circulaires, acteurs et biomarqueurs dans le cancer. Med Sci (Paris) 2020; 36 : 935–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hansen EB, Fredsøe J, Okholm TLH, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med 2022; 14 : 8. [CrossRef] [PubMed] [Google Scholar]
- Lacazette E, Diallo LH, Tatin F, et al. L’ARN circulaire nous joue-t-il des tours ? Med Sci (Paris) 2020; 36 : 38–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pfeffer S, Zavolan M, Grässer FA, et al. Identification of Virus-Encoded MicroRNAs. Science 2004 ; 304 : 734–736. [CrossRef] [PubMed] [Google Scholar]
- Ungerleider N, Concha M, Lin Z, et al. The Epstein Barr virus circRNAome. PLoS Pathog 2018 ; 14 : e1007206. [CrossRef] [PubMed] [Google Scholar]
- Chasseur AS, Trozzi G, Istasse C, et al. Marek’s Disease Virus Virulence Genes Encode Circular RNAs. J Virol 2022; 96 : e00321–2. [CrossRef] [PubMed] [Google Scholar]
- Ungerleider NA, Jain V, Wang Y, et al. Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. J Virol 2019 ; 93 : e01952–e01918. [CrossRef] [PubMed] [Google Scholar]
- Toptan T, Abere B, Nalesnik MA, et al. Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA 2018 ; 115 : E8737–E8745. [CrossRef] [PubMed] [Google Scholar]
- Spaete R. Frenkel. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982 ; 30 : 295–304. [CrossRef] [PubMed] [Google Scholar]
- Sandri-Goldin R M. The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 2008 ; 5241 : [Google Scholar]
- Gong L, Chen J, Dong M, et al. Epstein-Barr virus-derived circular RNA LMP 2A induces stemness in EBV-associated gastric cancer. EMBO Rep 2020; 21 : e49689. [CrossRef] [PubMed] [Google Scholar]
- Ge J, Wang J, Xiong F, et al. Epstein-Barr Virus-Encoded Circular RNA CircBART2.2 Promotes Immune Escape of Nasopharyngeal Carcinoma by Regulating PD-L1. Cancer Res 2021; 81 : 5074–88. [CrossRef] [PubMed] [Google Scholar]
- Sekiba K, Otsuka M, Ohno M, et al. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018 ; 9 : 20953–20964. [CrossRef] [PubMed] [Google Scholar]
- Zhu M, Liang Z, Pan J, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. Mol Ther Nucleic Acids 2021; 25 : 668–82. [CrossRef] [PubMed] [Google Scholar]
- Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019 ; 10 : 2300. [CrossRef] [PubMed] [Google Scholar]
- Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Sig Transduct Target Ther 2021; 6 : 74. [CrossRef] [Google Scholar]
- Yao W, Pan J, Liu Z, et al. The Cellular and Viral circRNAome Induced by Respiratory Syncytial Virus Infection. mBio 2021; 12 : e03075–21. [PubMed] [Google Scholar]
- Cai Z, Lu C, He J, et al. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2021; 22 : 1297–308. [CrossRef] [PubMed] [Google Scholar]
- Pan J, Zhang X, Zhang Y, et al. Grass carp reovirus encoding circular RNAs with antiviral activity. Aquaculture 2021; 533 : 736135. [CrossRef] [Google Scholar]
- Zhang Y, Zhang X, Dai K, et al. Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol 2022; 194 : 223–32. [CrossRef] [PubMed] [Google Scholar]
- Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 2017 ; 3 : 17053. [CrossRef] [PubMed] [Google Scholar]
- Lwoff A, Anderson T, Jacob F. Remarques sur les caractéristiques de la particule virale infectieuse. Annales de l’Institut Pasteur 1959 ; 97 : 281–289. [Google Scholar]
- Chamseddin BH, Lee EE, Kim J, et al. Assessment of circularized E7 RNA, GLUT1, and PD-L1 in anal squamous cell carcinoma. Oncotarget 2019 ; 10 : 5958–5969. [CrossRef] [PubMed] [Google Scholar]
- Yu L, Zheng Z-M. Human Papillomavirus Type 16 Circular RNA Is Barely Detectable for the Claimed Biological Activity. mBio 2022; 13 : e03594–21. [PubMed] [Google Scholar]
- Yu L, Lobanov A, Zheng Z-M. Reply to Wang, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00758–22. [PubMed] [Google Scholar]
- Wang RC, Lee EE, Zhao J, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00411–22. [PubMed] [Google Scholar]
- Yang S, Liu X, Wang M, et al. Circular RNAs Represent a Novel Class of Human Cytomegalovirus Transcripts. Microbiol Spectr 2022; 10 : e01106–22. [PubMed] [Google Scholar]
- Tagawa T, Gao S, Koparde VN, et al. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci USA 2018 ; 115 : 12805–12810. [CrossRef] [PubMed] [Google Scholar]
- Zhu M, Dai Y, Tong X, et al. Circ-Udg Derived from Cyprinid Herpesvirus 2 Promotes Viral Replication. Microbiol Spectr 2022; 10 : e00943–22. [PubMed] [Google Scholar]
- Abere B, Zhou H, Li J, et al. Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network. mBio 2020; 11 : e03059–20. [PubMed] [Google Scholar]
- Liu X-N, Guo XR, Han Y, et al. The Cellular and Viral circRNAs Induced by Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022; 13 : 925953. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.