Accès gratuit
Numéro |
Med Sci (Paris)
Volume 39, Numéro 4, Avril 2023
|
|
---|---|---|
Page(s) | 344 - 350 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023051 | |
Publié en ligne | 24 avril 2023 |
- Moelling K, Broecker F. Viroids and the Origin of Life. IJMS 2021; 22 : 3476. [CrossRef] [Google Scholar]
- Diener TO. Potato spindle tuber “virus”. Virology 1971 ; 45 : 411–428. [CrossRef] [Google Scholar]
- Singh R, Finnie R, Bagnall R. Losses due to the potato spindle tuber virus. American Potato Journal 1971 ; 48 : 262–267. [CrossRef] [Google Scholar]
- Sastry KS. Plant virus and viroid diseases in the tropics. Dordrecht New York: Springer, 2013 : 361 p. [CrossRef] [Google Scholar]
- Berget SM, Moore C, Sharp PA. Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 1977 ; 74 : 3171–3175. [CrossRef] [PubMed] [Google Scholar]
- Black DL. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annu Rev Biochem 2003 ; 72 : 291–336. [CrossRef] [PubMed] [Google Scholar]
- Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019 ; 20 : 675–691. [CrossRef] [PubMed] [Google Scholar]
- Ladet J, Mortreux F. Les ARN circulaires, acteurs et biomarqueurs dans le cancer. Med Sci (Paris) 2020; 36 : 935–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hansen EB, Fredsøe J, Okholm TLH, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med 2022; 14 : 8. [CrossRef] [PubMed] [Google Scholar]
- Lacazette E, Diallo LH, Tatin F, et al. L’ARN circulaire nous joue-t-il des tours ? Med Sci (Paris) 2020; 36 : 38–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pfeffer S, Zavolan M, Grässer FA, et al. Identification of Virus-Encoded MicroRNAs. Science 2004 ; 304 : 734–736. [CrossRef] [PubMed] [Google Scholar]
- Ungerleider N, Concha M, Lin Z, et al. The Epstein Barr virus circRNAome. PLoS Pathog 2018 ; 14 : e1007206. [CrossRef] [PubMed] [Google Scholar]
- Chasseur AS, Trozzi G, Istasse C, et al. Marek’s Disease Virus Virulence Genes Encode Circular RNAs. J Virol 2022; 96 : e00321–2. [CrossRef] [PubMed] [Google Scholar]
- Ungerleider NA, Jain V, Wang Y, et al. Comparative Analysis of Gammaherpesvirus Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. J Virol 2019 ; 93 : e01952–e01918. [CrossRef] [PubMed] [Google Scholar]
- Toptan T, Abere B, Nalesnik MA, et al. Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA 2018 ; 115 : E8737–E8745. [CrossRef] [PubMed] [Google Scholar]
- Spaete R. Frenkel. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982 ; 30 : 295–304. [CrossRef] [PubMed] [Google Scholar]
- Sandri-Goldin R M. The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 2008 ; 5241 : [Google Scholar]
- Gong L, Chen J, Dong M, et al. Epstein-Barr virus-derived circular RNA LMP 2A induces stemness in EBV-associated gastric cancer. EMBO Rep 2020; 21 : e49689. [CrossRef] [PubMed] [Google Scholar]
- Ge J, Wang J, Xiong F, et al. Epstein-Barr Virus-Encoded Circular RNA CircBART2.2 Promotes Immune Escape of Nasopharyngeal Carcinoma by Regulating PD-L1. Cancer Res 2021; 81 : 5074–88. [CrossRef] [PubMed] [Google Scholar]
- Sekiba K, Otsuka M, Ohno M, et al. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018 ; 9 : 20953–20964. [CrossRef] [PubMed] [Google Scholar]
- Zhu M, Liang Z, Pan J, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. Mol Ther Nucleic Acids 2021; 25 : 668–82. [CrossRef] [PubMed] [Google Scholar]
- Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019 ; 10 : 2300. [CrossRef] [PubMed] [Google Scholar]
- Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Sig Transduct Target Ther 2021; 6 : 74. [CrossRef] [Google Scholar]
- Yao W, Pan J, Liu Z, et al. The Cellular and Viral circRNAome Induced by Respiratory Syncytial Virus Infection. mBio 2021; 12 : e03075–21. [PubMed] [Google Scholar]
- Cai Z, Lu C, He J, et al. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2021; 22 : 1297–308. [CrossRef] [PubMed] [Google Scholar]
- Pan J, Zhang X, Zhang Y, et al. Grass carp reovirus encoding circular RNAs with antiviral activity. Aquaculture 2021; 533 : 736135. [CrossRef] [Google Scholar]
- Zhang Y, Zhang X, Dai K, et al. Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol 2022; 194 : 223–32. [CrossRef] [PubMed] [Google Scholar]
- Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 2017 ; 3 : 17053. [CrossRef] [PubMed] [Google Scholar]
- Lwoff A, Anderson T, Jacob F. Remarques sur les caractéristiques de la particule virale infectieuse. Annales de l’Institut Pasteur 1959 ; 97 : 281–289. [Google Scholar]
- Chamseddin BH, Lee EE, Kim J, et al. Assessment of circularized E7 RNA, GLUT1, and PD-L1 in anal squamous cell carcinoma. Oncotarget 2019 ; 10 : 5958–5969. [CrossRef] [PubMed] [Google Scholar]
- Yu L, Zheng Z-M. Human Papillomavirus Type 16 Circular RNA Is Barely Detectable for the Claimed Biological Activity. mBio 2022; 13 : e03594–21. [PubMed] [Google Scholar]
- Yu L, Lobanov A, Zheng Z-M. Reply to Wang, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00758–22. [PubMed] [Google Scholar]
- Wang RC, Lee EE, Zhao J, et al. Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA. mBio 2022; 13 : e00411–22. [PubMed] [Google Scholar]
- Yang S, Liu X, Wang M, et al. Circular RNAs Represent a Novel Class of Human Cytomegalovirus Transcripts. Microbiol Spectr 2022; 10 : e01106–22. [PubMed] [Google Scholar]
- Tagawa T, Gao S, Koparde VN, et al. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci USA 2018 ; 115 : 12805–12810. [CrossRef] [PubMed] [Google Scholar]
- Zhu M, Dai Y, Tong X, et al. Circ-Udg Derived from Cyprinid Herpesvirus 2 Promotes Viral Replication. Microbiol Spectr 2022; 10 : e00943–22. [PubMed] [Google Scholar]
- Abere B, Zhou H, Li J, et al. Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network. mBio 2020; 11 : e03059–20. [PubMed] [Google Scholar]
- Liu X-N, Guo XR, Han Y, et al. The Cellular and Viral circRNAs Induced by Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022; 13 : 925953. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.