Accès gratuit
Numéro
Med Sci (Paris)
Volume 39, Numéro 4, Avril 2023
Page(s) 351 - 358
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023052
Publié en ligne 24 avril 2023
  1. Verdaasdonk JS, Stephens AD, Haase J, et al. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution. J Cell Physiol 2014 ; 229 : 132–138. [CrossRef] [PubMed] [Google Scholar]
  2. Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 2017 ; 18 : 685–701. [CrossRef] [PubMed] [Google Scholar]
  3. Jacquemet G, Carisey AF, Hamidi H, et al. Cell science at a glance. The cell biologist’s guide to super-resolution microscopy. J Cell Sci 2020; 133 : jcs240713. [CrossRef] [PubMed] [Google Scholar]
  4. Schermelleh L, Ferrand A, Huser T, et al. Super-resolution microscopy demystified. Nat Cell Biol 2019 ; 21 : 72–84. [CrossRef] [PubMed] [Google Scholar]
  5. Sieben C, Douglass KM, Guichard P, et al. Super-resolution microscopy to decipher multi-molecular assemblies. Curr Opin Struct Biol 2018 ; 49 : 169–176. [CrossRef] [PubMed] [Google Scholar]
  6. Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science 2015 ; 347 : 543–548. [CrossRef] [PubMed] [Google Scholar]
  7. Gao R, Yu CJ, Gao L, et al. A highly homogeneous polymer composed of tetrahedron-like monomers for high-isotropy expansion microscopy. Nat Nanotechnol 2021; 16 : 698–707. [CrossRef] [PubMed] [Google Scholar]
  8. Damstra HG, Mohar B, Eddison M, et al. Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). eLife 2022; 11. [Google Scholar]
  9. Chozinski TJ, Halpern AR, Okawa H, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 2016 ; 13 : 485–488. [CrossRef] [PubMed] [Google Scholar]
  10. Hamel V, Guichard P. Improving the resolution of fluorescence nanoscopy using post-expansion labeling microscopy. Methods Cell Biol 2021; 161 : 297–315. [CrossRef] [PubMed] [Google Scholar]
  11. Ku T, Swaney J, Park JY, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol 2016 ; 34 : 973–981. [CrossRef] [PubMed] [Google Scholar]
  12. Zwettler FU, Reinhard S, Gambarotto D, et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nat Commun 2020; 11 : 3388. [CrossRef] [PubMed] [Google Scholar]
  13. Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods 2019 ; 16 : 33–41. [CrossRef] [PubMed] [Google Scholar]
  14. Gambarotto D, Zwettler FU, Le Guennec M, et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 2019 ; 16 : 71–74. [CrossRef] [PubMed] [Google Scholar]
  15. Gambarotto D, Hamel V, Guichard P. Ultrastructure expansion microscopy (U-ExM). Methods Cell Biol 2021; 161 : 57–81. [CrossRef] [PubMed] [Google Scholar]
  16. Steib E, Laporte MH, Gambarotto D, et al. Wdr90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife 2020; 9 : 1–28. [CrossRef] [Google Scholar]
  17. Le Guennec M, Klena N, Gambarotto D, et al. A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv 2020; 6 : eaaz4137. [CrossRef] [PubMed] [Google Scholar]
  18. Laporte MH, Bouhlel IB, Bertiaux E, et al. Human SFI1 and Centrin form a complex critical for centriole architecture and ciliogenesis. EMBO J 2022; 41 : e112107. [CrossRef] [PubMed] [Google Scholar]
  19. Karasu OR, Neuner A, Atorino ES, et al. The central scaffold protein CEP350 coordinates centriole length, stability, and maturation. J Cell Biol 2022; 221 : e202203081. [CrossRef] [Google Scholar]
  20. van den Hoek H, Klena N, Jordan MA, et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 2022; 377 : 543–8. [CrossRef] [PubMed] [Google Scholar]
  21. Le Borgne P, Greibill L, Laporte MH, et al. The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly. PLOS Biol 2022; 20 : e3001782. [CrossRef] [PubMed] [Google Scholar]
  22. Park J, Khan S, Yun DH, et al. Epitope-preserving magnified analysis of proteome (eMAP). Sci Adv 2021; 7 : eabf6589. [CrossRef] [PubMed] [Google Scholar]
  23. Sahabandu N, Kong D, Magidson V, et al. Expansion microscopy for the analysis of centrioles and cilia. J. Microsc. 2019 ; 276 : 145–159. [CrossRef] [PubMed] [Google Scholar]
  24. Kellenberger E, Johansen R, Maeder M, et al. Artefacts and morphological changes during chemical fixation. J Microsc 1992 ; 168 : 181–201. [CrossRef] [PubMed] [Google Scholar]
  25. Dubochet J, McDowall AW. Vitrification of pure water for electron microscopy. J Microsc 1981; 124 : RP3–RP4. [CrossRef] [Google Scholar]
  26. Kellenberger E. The potential of cryofixation and freeze substitution: observations and theoretical considerations. J Microsc 1991 ; 161 : 183–203. [CrossRef] [PubMed] [Google Scholar]
  27. Laporte MH, Klena N, Hamel V, et al. Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nat Methods 2022; 19 : 216–22. [CrossRef] [PubMed] [Google Scholar]
  28. Yu C-C (Jay), Barry NC, Wassie AT, et al. Expansion microscopy of C. elegans. eLife 2020; 9. [Google Scholar]
  29. M’Saad O, Bewersdorf J. Light microscopy of proteins in their ultrastructural context. Nat Commun 2020; 11 : 3850. [CrossRef] [PubMed] [Google Scholar]
  30. Sarkar D, Kang J, Wassie AT, et al. Revealing nanostructures in brain tissue via protein decrowding by iterative expansion microscopy. Nat Biomed Eng 2022; 6 : 1057–73. [CrossRef] [PubMed] [Google Scholar]
  31. Mercey O, Kostic C, Bertiaux E, et al. The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLOS Biol 2022; 20 : e3001649. [CrossRef] [PubMed] [Google Scholar]
  32. Mahecic D, Gambarotto D, Douglass KM, et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat Methods 2020; 17 : 726–33. [CrossRef] [PubMed] [Google Scholar]
  33. Vásquez-Limeta A, Lukasik K, Kong D, et al. CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 2022; 221 : e202108018. [CrossRef] [PubMed] [Google Scholar]
  34. Kong D, Sahabandu N, Sullenberger C, et al. Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J Cell Biol 2020; 219 : e201910019. [CrossRef] [PubMed] [Google Scholar]
  35. Mahen R. cNap1 bridges centriole contact sites to maintain centrosome cohesion. PLOS Biol 2022; 20 : e3001854. [CrossRef] [PubMed] [Google Scholar]
  36. Woglar A, Pierron M, Schneider FZ, et al. Molecular architecture of the C. elegans centriole. PLOS Biol 2022; 20 : e3001784. [CrossRef] [PubMed] [Google Scholar]
  37. Bertiaux E, Balestra AC, Bournonville L, et al. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLOS Biol 2021; 19 : e3001020. [CrossRef] [PubMed] [Google Scholar]
  38. Tosetti N, Dos Santos Pacheco N, Bertiaux E, et al. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. eLife 2020; 9. [CrossRef] [PubMed] [Google Scholar]
  39. Amodeo S, Kalichava A, Fradera-Sola A, et al. Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. J Cell Sci 2021; 134 : jcs254300. [CrossRef] [PubMed] [Google Scholar]
  40. Dos Santos Pacheco N, Tosetti N, Krishnan A, et al. Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex. mBio 2021; 12 : e0205721. [CrossRef] [PubMed] [Google Scholar]
  41. Liffner B, Absalon S. Expansion Microscopy Reveals Plasmodium falciparum Blood-Stage Parasites Undergo Anaphase with A Chromatin Bridge in the Absence of Mini-Chromosome Maintenance Complex Binding Protein. Microorganisms 2021; 9 : 2306. [CrossRef] [PubMed] [Google Scholar]
  42. Lentini G, Ben Chaabene R, Vadas O, et al. Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion. Nat Commun 2021; 12 : 3788. [CrossRef] [PubMed] [Google Scholar]
  43. Alonso VL. Ultrastructure Expansion Microscopy (U-ExM) in Trypanosoma cruzi: localization of tubulin isoforms and isotypes. Parasitol Res 2022; 121 : 3019–24. [CrossRef] [PubMed] [Google Scholar]
  44. Vigetti L, Labouré T, Roumégous C, et al. The BCC7 Protein Contributes to the Toxoplasma Basal Pole by Interfacing between the MyoC Motor and the IMC Membrane Network. Int J Mol Sci 2022; 23 : 5995. [CrossRef] [PubMed] [Google Scholar]
  45. Pavlou G, Touquet B, Vigetti L, et al. Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma. ACS Nano 2020; 14 : 7121–39. [CrossRef] [PubMed] [Google Scholar]
  46. Tomasina R, Gonzalez FC, Martins-Duarte ÉS, et al. Separate To Operate: the Centriole-Free Inner Core of the Centrosome Regulates the Assembly of the Intranuclear Spindle in Toxoplasma gondii. mBio 2022; 13 : e0185922. [CrossRef] [PubMed] [Google Scholar]
  47. Louvel V, Haase R, Mercey O, et al. Nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy (iU-ExM). bioRxiv 2022; 2022.11.14.516383. [Google Scholar]
  48. Hinterndorfer K, Laporte MH, Mikus F, et al. Ultrastructure Expansion Microscopy reveals the nanoscale cellular architecture of budding and fission yeast. J Cell Sci 2022; 135 : jcs260240. [CrossRef] [PubMed] [Google Scholar]
  49. Damstra HG, Mohar B, Eddison M, et al. Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). eLife 2022; 11. [Google Scholar]
  50. Chang JB, Chen F, Yoon YG, et al. Iterative expansion microscopy. Nat Methods 2017; 14 : 593–9. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.