Open Access
Issue
Med Sci (Paris)
Volume 38, Number 12, Décembre 2022
Un monde de virus
Page(s) 1008 - 1015
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022165
Published online 13 December 2022
  1. Suttle CA. Marine viruses — major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–812. [CrossRef] [PubMed] [Google Scholar]
  2. Mushegian AR Are There 1031 Virus Particles on Earth, or More, or Fewer?. J Bacteriol 2020 ; 202. [Google Scholar]
  3. Hendrix RW, Smith MCM, Burns RN, et al. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc Natl Acad Sci USA 1999 ; 96 : 2192–2197. [CrossRef] [PubMed] [Google Scholar]
  4. Bergh Ø, BØrsheim KY, Bratbak G, et al. High abundance of viruses found in aquatic environments. Nature 1989 ; 340 : 467–468. [CrossRef] [PubMed] [Google Scholar]
  5. Noble R, Fuhrman J. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 1998 ; 14 : 113–118. [CrossRef] [Google Scholar]
  6. Marie D, Brussaard CPD, Thyrhaug R, et al. Enumeration of Marine Viruses in Culture and Natural Samples by Flow Cytometry. Appl Environ Microbiol 1999 ; 65 : 45–52. [CrossRef] [PubMed] [Google Scholar]
  7. Forterre P, Soler N, Krupovic M, et al. Fake virus particles generated by fluorescence microscopy. Trends Microbiol 2013 ; 21 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  8. Wigington CH, Sonderegger D, Brussaard CPD, et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 2016 ; 1 : 15024. [CrossRef] [PubMed] [Google Scholar]
  9. Hewson I, O’Neil JM, Fuhrman JA, et al. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 2001 ; 46 : 1734–1746. [CrossRef] [Google Scholar]
  10. Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J 2013 ; 7 : 1738–1751. [CrossRef] [PubMed] [Google Scholar]
  11. Gregory AC, Zayed AA, Conceição-Neto N, et al. Marine DNA Viral Macro – and Microdiversity from Pole to Pole. Cell 2019 ; 177 : 1109–1123. [CrossRef] [PubMed] [Google Scholar]
  12. Steward GF, Culley AI, Mueller JA, et al. Are we missing half of the viruses in the ocean?. ISME J 2013 ; 7 : 672–679. [CrossRef] [PubMed] [Google Scholar]
  13. Bachy C, Hehenberger E, Ling Y-C, et al. Marine Protists: A Hitchhiker’s Guide to their Role in the Marine Microbiome. In: Stal LJ, Cretoiu MS (eds). The Marine Microbiome. Cham : Springer International Publishing, 2022 : pp. 159–241. [CrossRef] [Google Scholar]
  14. Zayed AA, Wainaina JM, Dominguez-Huerta G, et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 2022; 376 : 156–62. [CrossRef] [PubMed] [Google Scholar]
  15. Jiang SC, Paul JH. Gene Transfer by Transduction in the Marine Environment. Appl Environ Microbiol 1998 ; 64 : 2780–2787. [CrossRef] [PubMed] [Google Scholar]
  16. Crummett LT, Puxty RJ, Weihe C, et al. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 2016 ; 499 : 219–229. [CrossRef] [Google Scholar]
  17. Puxty RJ, Millard AD, Evans DJ, et al. Shedding new light on viral photosynthesis. Photosynth Res 2015 ; 126 : 71–97. [CrossRef] [PubMed] [Google Scholar]
  18. Mihara T, Koyano H, Hingamp P, et al. Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ 2018 ; 33 : 162–171. [CrossRef] [PubMed] [Google Scholar]
  19. Monier A, Chambouvet A, Milner DS, et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc Natl Acad Sci USA 2017 ; 114 : E7489–E7498. [CrossRef] [PubMed] [Google Scholar]
  20. Bachy C, Charlesworth CJ, Chan AM, et al. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ Microbiol 2018 ; 20 : 2898–2912. [CrossRef] [PubMed] [Google Scholar]
  21. Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology 2018 ; 518 : 423–433. [CrossRef] [Google Scholar]
  22. Yutin N, Koonin EV. Proteorhodopsin genes in giant viruses. Biol Direct 2012 ; 7 : 34. [CrossRef] [PubMed] [Google Scholar]
  23. Needham DM, Yoshizawa S, Hosaka T, et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci USA 2019 ; 116 : 20574–20583. [CrossRef] [PubMed] [Google Scholar]
  24. Griffiths DJ. Endogenous retroviruses in the human genome sequence. Genome Biol 2001 ; 2 : 1–5. [Google Scholar]
  25. Maumus F, Epert A, Nogué F, et al. Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun 2014 ; 5 : 4268. [CrossRef] [PubMed] [Google Scholar]
  26. Filée J.. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: The visible part of the iceberg?. Virology 2014 ; 466–7 : 53–59. [Google Scholar]
  27. Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 2013 ; 3 : 558–565. [CrossRef] [PubMed] [Google Scholar]
  28. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA 2018 ; 115 : 6506–6511. [CrossRef] [PubMed] [Google Scholar]
  29. Aylward FO, Boeuf D, Mende DR, et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci USA 2017 ; 114 : 11446–11451. [CrossRef] [PubMed] [Google Scholar]
  30. Danovaro R, Dell’Anno A, Corinaldesi C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008 ; 454 : 1084–1087. [CrossRef] [PubMed] [Google Scholar]
  31. Short SM. The ecology of viruses that infect eukaryotic algae. Environ Microbiol 2012 ; 14 : 2253–2271. [CrossRef] [PubMed] [Google Scholar]
  32. Thingstad T, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 1997 ; 13 : 19–27. [CrossRef] [Google Scholar]
  33. Mruwat N, Carlson MCG, Goldin S, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J 2021; 15 : 41–54. [CrossRef] [PubMed] [Google Scholar]
  34. Mojica KDA, Huisman J, Wilhelm SW, et al. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J 2016 ; 10 : 500–513. [CrossRef] [PubMed] [Google Scholar]
  35. Mojica KDA, Brussaard CPD. Factors affecting virus dynamics and microbial host – virus interactions in marine environments. FEMS Microbiol Ecol 2014 ; 89 : 495–515. [CrossRef] [PubMed] [Google Scholar]
  36. Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the SeaViruses play critical roles in the structure and function of aquatic food webs. Bioscience 1999 ; 49 : 781–788. [CrossRef] [Google Scholar]
  37. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999 ; 399 : 541–548. [CrossRef] [PubMed] [Google Scholar]
  38. Suttle CA. Viruses in the sea. Nature 2005 ; 437 : 356–361. [CrossRef] [PubMed] [Google Scholar]
  39. Poorvin L, Rinta-Kanto JM, Hutchins DA, et al. Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr 2004 ; 49 : 1734–1741. [CrossRef] [Google Scholar]
  40. Yamada Y, Tomaru Y, Fukuda H, et al. Aggregate Formation During the Viral Lysis of a Marine Diatom. Front Mar Sci 2018 ; 5 : 167. [CrossRef] [Google Scholar]
  41. Pelusi A, De Luca P, Manfellotto F, et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol 2021; 229 : 2251–9. [CrossRef] [PubMed] [Google Scholar]
  42. Zimmerman AE, Howard-Varona C, Needham DM, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2020; 18 : 21–34. [CrossRef] [PubMed] [Google Scholar]
  43. Guidi L, Chaffron S, Bittner L, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 2016 ; 532 : 465–470. [CrossRef] [PubMed] [Google Scholar]
  44. Trainic M, Koren I, Sharoni S, et al. Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. Iscience 2018 ; 6 : 327–335. [CrossRef] [PubMed] [Google Scholar]
  45. Danovaro R, Corinaldesi C, Dell’anno A, et al. Marine viruses and global climate change. FEMS Microbiol Rev 2011 ; 35 : 993–1034. [CrossRef] [PubMed] [Google Scholar]
  46. Baudoux A-C, Brussaard CPD. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 2005 ; 341 : 80–90. [CrossRef] [Google Scholar]
  47. Arsenieff L, Gall FL, Rigaut-Jalabert F, et al. Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel. ISME J 2020; 1–16. [Google Scholar]
  48. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 2020; 18 : 125–38. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.