Open Access
Med Sci (Paris)
Volume 38, Number 12, Décembre 2022
Un monde de virus
Page(s) 1016 - 1027
Section M/S Revues
Published online 13 December 2022
  1. Roossinck MJ. Evolutionary and ecological links between plant and fungal viruses. New Phytol 2019 ; 221 : 86–92. [CrossRef] [PubMed] [Google Scholar]
  2. Safari M, Ferrari MJ, Roossinck MJ. Manipulation of Aphid Behavior by a Persistent Plant Virus. J Virol 2019 ; 93 : e01781–e01718. [CrossRef] [PubMed] [Google Scholar]
  3. Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 2007 ; 315 : 513–515. [CrossRef] [PubMed] [Google Scholar]
  4. Gonzalez R, Butkovic A, Escaray FJ, et al. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 2021; 118 : e2020990118. [CrossRef] [PubMed] [Google Scholar]
  5. Chiba S, Kondo H, Tani A, et al. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 2011 ; 7 : e1002146. [CrossRef] [PubMed] [Google Scholar]
  6. Nakatsukasa-Akune M, Yamashita K, Shimoda Y, et al. Suppression of root nodule formation by artificial expression of the TrEnodDR1 (coat protein of White clover cryptic virus 1) gene in Lotus japonicus. Mol Plant Microbe Interact 2005 ; 18 : 1069–1080. [CrossRef] [PubMed] [Google Scholar]
  7. Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet 2010 ; 6 : e1001191. [CrossRef] [PubMed] [Google Scholar]
  8. Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol 2017 ; 25 : 81–89. [CrossRef] [PubMed] [Google Scholar]
  9. Suzuki Y, Baidaliuk A, Miesen P, et al. Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Curr Biol 2020; 30 : 3495–506 e6. [CrossRef] [PubMed] [Google Scholar]
  10. Drezen JM, Leobold M, Bézier A, et al. Endogenous viruses of parasitic wasps: variations on a common theme. Curr Opin Virol 2017 ; 25 : 41–48. [CrossRef] [PubMed] [Google Scholar]
  11. Malik HS, Henikoff S, Eickbush TH. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 2000 ; 10 : 1307–1318. [CrossRef] [PubMed] [Google Scholar]
  12. Anggono V, Huganir RL. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 2012 ; 22 : 461–469. [CrossRef] [PubMed] [Google Scholar]
  13. Bi R, Kong LL, Xu M, et al. The Arc Gene Confers Genetic Susceptibility to Alzheimer’s Disease in Han Chinese. Mol Neurobiol 2018 ; 55 : 1217–1226. [CrossRef] [PubMed] [Google Scholar]
  14. Pastuzyn ED, Day CE, Kearns RB, et al. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell 2018 ; 172 : 275–88 e18. [CrossRef] [PubMed] [Google Scholar]
  15. Ashley J, Cordy B, Lucia D, et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 2018 ; 172 : 262–74 e11. [CrossRef] [PubMed] [Google Scholar]
  16. Hantak MP, Einstein J, Kearns RB, Shepherd JD. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci 2021; 44 : 248–59. [CrossRef] [PubMed] [Google Scholar]
  17. Albagli O, Pelczar H. La protéine neuronale Arc : une capside de rétrotransposon recyclée pour des fonctions clés dans les synapses. Med Sci (Paris) 2020; 36 : 980–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Touret F, Guiguen F, Terzian C. Un retrovirus endogene actif et infectieux : le cas gypsy chez Drosophila melanogaster. Virologie (Montrouge) 2012 ; 16 : 381–389. [PubMed] [Google Scholar]
  19. Lavialle C, Cornelis G, Dupressoir A, et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond B Biol Sci 2013 ; 368 : 20120507. [CrossRef] [PubMed] [Google Scholar]
  20. Dupressoir A, Heidmann T. Les syncytines des protéines d’enveloppe rétrovirales capturées au profit du développement placentaire. Med Sci (Paris) 2011 ; 27 : 163–169. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Blond JL, Lavillette D, Cheynet V, et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 2000 ; 74 : 3321–3329. [CrossRef] [PubMed] [Google Scholar]
  22. Dupressoir A, Vernochet C, Bawa O, et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 2009 ; 106 : 12127–12132. [CrossRef] [PubMed] [Google Scholar]
  23. Cornelis G, Heidmann O, Degrelle SA, et al. Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants. Proc Natl Acad Sci U S A 2013 ; 110 : E828–E837. [CrossRef] [PubMed] [Google Scholar]
  24. Cornelis G, Funk M, Vernochet C, et al. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc Natl Acad Sci U S A 2017 ; 114 : E10991–EE1000. [CrossRef] [PubMed] [Google Scholar]
  25. Gosselin Grenet AS, Salasc F, Francois S, et al. Les densovirus : une « massive attaque » chez les arthropodes. Virologie (Montrouge) 2015 ; 19 : 19–31. [PubMed] [Google Scholar]
  26. Parker BJ, Brisson JA. A Laterally Transferred Viral Gene Modifies Aphid Wing Plasticity. Curr Biol 2019 ; 29 : 2098–103 e5. [CrossRef] [PubMed] [Google Scholar]
  27. Xu P, Zhou Z, Xiong M, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog 2017 ; 13 : e1006266. [CrossRef] [PubMed] [Google Scholar]
  28. Federici BA, Bigot Y. Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps. J Insect Physiol 2003 ; 49 : 419–432. [CrossRef] [PubMed] [Google Scholar]
  29. Lorenzi A, Volkoff AN. [Polydnaviruses, a unique example of viral machinery domesticated by parasitoid wasps]. Virologie (Montrouge) 2020; 24 : 113–25. [PubMed] [Google Scholar]
  30. Strand MR, Pech LP. Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol 1995 ; 40 : 31–56. [CrossRef] [PubMed] [Google Scholar]
  31. Bézier A, Annaheim M, Herbinière J, et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 2009 ; 323 : 926–930. [CrossRef] [PubMed] [Google Scholar]
  32. Petersen JM, Bézier A, Drezen JM, van Oers MM. The naked truth: An updated review on nudiviruses and their relationship to bracoviruses and baculoviruses. J Invertebr Pathol 2022; 189 : 107718. [CrossRef] [PubMed] [Google Scholar]
  33. Murphy N, Banks JC, Whitfield JB, Austin AD. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol 2008 ; 47 : 378–395. [CrossRef] [PubMed] [Google Scholar]
  34. Gauthier J, Boulain H, van Vugt J, et al. Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Commun Biol 2021; 4 : 104. [CrossRef] [PubMed] [Google Scholar]
  35. Burke GR, Thomas SA, Eum JH, Strand MR. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog 2013 ; 9 : e1003348. [CrossRef] [PubMed] [Google Scholar]
  36. Burke GR, Walden KK, Whitfield JB, et al. Widespread genome reorganization of an obligate virus mutualist. PLoS Genet 2014 ; 10 : e1004660. [CrossRef] [PubMed] [Google Scholar]
  37. Espagne E, Dupuy C, Huguet E, et al. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 2004 ; 306 : 286–289. [CrossRef] [PubMed] [Google Scholar]
  38. Burke GR, Simmonds TJ, Thomas SA, Strand MR. Microplitis demolitor bracovirus proviral loci and clustered replication genes exhibit distinct DNA amplification patterns during replication. J Virol 2015 ; 89 : 9511–9523. [CrossRef] [PubMed] [Google Scholar]
  39. Louis F, Bézier A, Periquet G, et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J Virol 2013 ; 87 : 9649–9660. [CrossRef] [PubMed] [Google Scholar]
  40. Volkoff AN, Jouan V, Urbach S, et al. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog 2010 ; 6 : e1000923. [CrossRef] [PubMed] [Google Scholar]
  41. Legeai F, Santos BF, Robin S, et al. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biol 2020; 18 : 89. [CrossRef] [PubMed] [Google Scholar]
  42. Pichon A, Bézier A, Urbach S, et al. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci Adv 2015 ; 1 : e1501150. [CrossRef] [PubMed] [Google Scholar]
  43. Burke GR, Simmonds TJ, Sharanowski BJ, Geib SM. Rapid Viral Symbiogenesis via Changes in Parasitoid Wasp Genome Architecture. Mol Biol Evol 2018 ; 35 : 2463–2474. [CrossRef] [PubMed] [Google Scholar]
  44. Pichon A, Bézier A, Barbe V, et al. Les guêpes parasites ont domestiqué des virus à plusieurs reprises au cours de leur évolution. Med Sci (Paris) 2016 ; 32 : 699–703. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Leobold M, Bézier A, Pichon A, et al. The Domestication of a Large DNA Virus by the Wasp Venturia canescens Involves Targeted Genome Reduction through Pseudogenization. Genome Biol Evol 2018 ; 10 : 1745–1764. [CrossRef] [PubMed] [Google Scholar]
  46. Martin JL, Cao S, Maldonado JO, et al. Distinct Particle Morphologies Revealed through Comparative Parallel Analyses of Retrovirus-Like Particles. J Virol 2016 ; 90 : 8074–8084. [CrossRef] [PubMed] [Google Scholar]
  47. Cerqueira de Araujo A, Leobold M, Bézier A, et al. Conserved viral transcription plays a key role in virus-like particle production of the parasitoid Wasp Venturia canescens. J Virol 2022; 96 : 1–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.