Open Access
Issue
Med Sci (Paris)
Volume 38, Number 12, Décembre 2022
Un monde de virus
Page(s) 1028 - 1038
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022161
Published online 13 December 2022
  1. Human Microbiome Project – Home 2013. [Google Scholar]
  2. Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014 ; 14 : 827–835. [Google Scholar]
  3. Borrel G, Brugère J-F, Gribaldo S, et al. The host-associated archaeome. Nat Rev Microbiol 2020; 18 : 622–36. [Google Scholar]
  4. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016 ; 14 : e1002533. [Google Scholar]
  5. Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 2021; 19 : 514–27. [Google Scholar]
  6. Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe 2019 ; 25 : 195–209. [CrossRef] [PubMed] [Google Scholar]
  7. Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017 ; 46 : 800–815. [CrossRef] [PubMed] [Google Scholar]
  8. Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 2: retroviral symbiosis. J R Soc Med 2009 ; 102 : 324–331. [Google Scholar]
  9. Lavialle C, Cornelis G, Dupressoir Aet al. Paleovirology of ’syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond B Biol Sci 2013 ; 368 : 20120507. [Google Scholar]
  10. Mager DL, Stoye JP. Mammalian Endogenous Retroviruses. Microbiol Spectr 2015; 3 : MDNA3-0009-2014. [Google Scholar]
  11. Dupressoir A, Heidmann T. Les syncytines: Des protéines d’enveloppe rétrovirales capturées au profit du développement placentaire. Med Sci (Paris) 2011 ; 27 : 163–169. [Google Scholar]
  12. Navarro F, Muniesa M. Phages in the Human Body. Front Microbiol 2017 ; 8 : 566. [PubMed] [Google Scholar]
  13. Li X, Liu Y, Yang X, et al. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13 : 895537. [CrossRef] [PubMed] [Google Scholar]
  14. Porto BN. Insights Into the Role of the Lung Virome During Respiratory Viral Infections. Front Immunol 2022; 13 : 885341. [CrossRef] [PubMed] [Google Scholar]
  15. Vitetta L, Vitetta G, Hall S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front Immunol 2018 ; 9 : 2240. [CrossRef] [PubMed] [Google Scholar]
  16. Prangishvili D, Bamford DH, Forterre Pet al. The enigmatic archaeal virosphere. Nat Rev Microbiol 2017 ; 15 : 724–739. [Google Scholar]
  17. Krupovic M, Cvirkaite-Krupovic V, Iranzo Jet al. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2018 ; 244 : 181–193. [Google Scholar]
  18. Henrot C, Kuksin M. Le virobiote intestinal, nouvelle composante des interactions entre le microbiote et le système immunitaire. Med Sci (Paris) 2019 ; 35 : 578–580. [Google Scholar]
  19. Moustafa A, Xie C, Kirkness Eet al. The blood DNA virome in 8,000 humans. PLoS Pathog 2017 ; 13 : e1006292. [Google Scholar]
  20. Happel A-U, Varsani A, Balle C, et al. The Vaginal Virome-Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes? Viruses 2020; 12 : 832. [Google Scholar]
  21. Nishizawa T, Okamoto H, Konishi Ket al. A Novel DNA Virus (TTV) Associated with Elevated Transaminase Levels in Posttransfusion Hepatitis of Unknown Etiology. Biochem Biophys Res Comm 1997 ; 241 : 92–97. [CrossRef] [Google Scholar]
  22. Focosi D, Antonelli G, Pistello Met al. Torquetenovirus: the human virome from bench to bedside. Clin Microbiol Infec 2016 ; 22 : 589–593. [CrossRef] [Google Scholar]
  23. Lolomadze EA, Rebrikov DV. Constant companion: clinical and developmental aspects of torque teno virus infections. Arch Virol 2020; 165 : 2749–57. [CrossRef] [PubMed] [Google Scholar]
  24. De Vlaminck I, Khush KK, Strehl Cet al. Temporal Response of the Human Virome to Immunosuppression and Antiviral Therapy. Cell 2013 ; 155 : 1178–1187. [CrossRef] [PubMed] [Google Scholar]
  25. Yin H, Qu J, Peng Qet al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2019 ; 208 : 573–583. [Google Scholar]
  26. Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022; 603 : 321–7. [Google Scholar]
  27. Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022; 375 : 296–301. [Google Scholar]
  28. Manet E, Gruffat H. Le virus d’Epstein-Barr : Un acteur clé dans le développement de la sclérose en plaques. Med Sci (Paris) 2022; 38 : 422–4. [Google Scholar]
  29. Aswad A, Aimola G, Wight D, et al. Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa. Mol Biol Evol 2021; 38 : 96–107. [Google Scholar]
  30. Haley CT, Mui UN, Vangipuram Ret al. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Papillomaviruses and Merkel cell polyomavirus. J Am Acad Dermatol 2019 ; 81 : 1–21. [CrossRef] [PubMed] [Google Scholar]
  31. Solis M, Gallais F, Velay Aet al. BK-virus and pathophysiology of associated diseases. Virologie (Montrouge) 2019 ; 23 : 7–22. [Google Scholar]
  32. Sun C, Skaletsky H, Rozen Set al. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 2000 ; 9 : 2291–2296. [CrossRef] [PubMed] [Google Scholar]
  33. Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 3: HERVs in diseases. J R Soc Med 2009 ; 102 : 415–424. [Google Scholar]
  34. Medina J, Charvet B, Leblanc Pet al. Des séquences rétrovirales endogènes dans le génome humain peuvent jouer un rôle physiologique oupathologique. Med Sci (Paris) 2017 ; 33 : 397–403. [Google Scholar]
  35. Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 4: HERVs in cancer. J R Soc Med 2009 ; 102 : 474–480. [Google Scholar]
  36. Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020; 38 : A7–12. [Google Scholar]
  37. Melles DC, van Leeuwen WB, Boelens HAMet al. Panton-Valentine Leukocidin Genes in Staphylococcus aureus. Emerg Infect Dis 2006 ; 12 : 1174–1175. [CrossRef] [PubMed] [Google Scholar]
  38. Ives A, Ronet C, Prevel Fet al. Leishmania RNA Virus Controls the Severity of Mucocutaneous Leishmaniasis. Science 2011 ; 331 : 775–778. [Google Scholar]
  39. Olivier M, Zamboni DS. Leishmania Viannia guyanensis, LRV1 virus and extracellular vesicles: a dangerous trio influencing the faith of immune response during muco-cutaneous leishmaniasis. Curr Opin Immunol 2020; 66 : 108–13. [CrossRef] [PubMed] [Google Scholar]
  40. https://talk.ictvonline.org/taxonomy/. [Google Scholar]
  41. https://viralzone.expasy.org/678. [Google Scholar]
  42. OIE. https://www.oie.int/fr/ce-que-nous-faisons/initiatives-mondiales/une-seule-sante/. [Google Scholar]
  43. OMS. https://www.who.int/fr/news-room/fact-sheets/detail/cancer. [Google Scholar]
  44. Hatano Y, Ideta T, Hirata A, et al. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13 : 2625. [CrossRef] [PubMed] [Google Scholar]
  45. Pisano MB, Giadans CG, Flichman DM, et al. Viral hepatitis update: Progress and perspectives. World J Gastroenterol 2021; 27 : 4018–44. [Google Scholar]
  46. Wight DJ, Aimola G, Aswad A, et al. Unbiased optical mapping of telomere-integrated endogenous human herpesvirus 6. Proc Natl Acad Sci USA 2020; 117 : 31410–6. [Google Scholar]
  47. Rossi A, Salvetti A. Intégration des vecteurs AAV et mutagenèse insertionnelle. Med Sci (Paris) 2016 ; 32 : 167–174. [Google Scholar]
  48. Horie M, Honda T, Suzuki Yet al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 2010 ; 463 : 84–87. [Google Scholar]
  49. https://www.who.int/fr/news-room/facts-in-pictures/detail/hiv-aids. [Google Scholar]
  50. Forlani G, Shallak M, Accolla RS, et al. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22 : 8001. [CrossRef] [PubMed] [Google Scholar]
  51. Haute Autorité de Santé. Papillomavirus : la vaccination recommandée pour tous les garçons. https://www.has-sante.fr/jcms/p_3147966/fr/papillomavirus-la-vaccination-recommandee-pour-tous-les-garcons. [Google Scholar]
  52. Thi Kha Tu N, Thi Thu Hong N, Thi Han Ny N, et al. The Virome of Acute Respiratory Diseases in Individuals at Risk of Zoonotic Infections. Viruses 2020; 12 : 960. [Google Scholar]
  53. Wylie KM. The Virome of the Human Respiratory Tract. Clin Chest Med 2017 ; 38 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  54. Abeles SR, Ly M, Santiago-Rodriguez TMet al. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes. PLoS One 2015 ; 10 : e0134941. [Google Scholar]
  55. Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and Its Helper Viruses. Viruses 2020; 12 : 662. [Google Scholar]
  56. Londhe R, Kulkarni S. HTLV-2 Encoded Antisense Protein APH-2 Suppresses HIV-1 Replication. Viruses 2021; 13 : 1432. [Google Scholar]
  57. Yu Y, Wan Z, Wang J-H, et al. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence; 13 : 324–1. [Google Scholar]
  58. Barton ES, White DW, Cathelyn JSet al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007 ; 447 : 326–329. [Google Scholar]
  59. Furman D, Jojic V, Sharma Set al. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 2015 ; 7 : 281. [Google Scholar]
  60. Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 2014 ; 516 : 94–98. [Google Scholar]
  61. Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Hölzl Eet al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat Microbiol 2019 ; 4 : 1737–1749. [Google Scholar]
  62. Ingle H, Lee S, Ai Tet al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat Microbiol 2019 ; 4 : 1120–1128. [Google Scholar]
  63. Cortez V, Boyd DF, Crawford JC, et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat Commun 2020; 11 : 2097. [Google Scholar]
  64. Stewart JA, Reef SE, Pellett PEet al. Herpesvirus infections in persons infected with human immunodeficiency virus. Clin Infect Dis 1995 ; 21 : S114–S120. [CrossRef] [PubMed] [Google Scholar]
  65. Isaacs SR, Foskett DB, Maxwell AJ, et al. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9 : 1519. [Google Scholar]
  66. Compton AA, Malik HS, Emerman M. Host gene evolution traces the evolutionary history of ancient primate lentiviruses. Philos Trans R Soc Lond B Biol Sci 2013 ; 368 : 20120496. [Google Scholar]
  67. Suttle CA. Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–812. [Google Scholar]
  68. Michel Serres. Le Parasite. Paris : Hachette. Pluriel, numéro 862 1980. [Google Scholar]
  69. Parker MT. An Ecological Framework of the Human Virome Provides Classification of Current Knowledge and Identifies Areas of Forthcoming Discovery. Yale J Biol Med 2016 ; 89 : 339–351. [Google Scholar]
  70. Popgeorgiev N, Temmam S, Raoult Det al. Describing the Silent Human Virome with an Emphasis on Giant Viruses. INT 2013 ; 56 : 395–412. [Google Scholar]
  71. Rascovan N, Duraisamy R, Desnues C. Metagenomics and the Human Virome in Asymptomatic Individuals. Annu Rev Microbiol 2016 ; 70 : 125–141. [CrossRef] [PubMed] [Google Scholar]
  72. Yousuf W, Ibrahim H, Harfouche M, et al. Herpes simplex virus type 1 in Europe: systematic review, meta-analyses and meta-regressions. BMJ Global Health 2020; 5 : e002388. [CrossRef] [PubMed] [Google Scholar]
  73. Malkin J-E, Morand P, Malvy Det al. Seroprevalence of HSV-1 and HSV-2 infection in the general French population. Sex Transm Infect 2002 ; 78 : 201–203. [Google Scholar]
  74. Bollaerts K, Riera-Montes M, Heininger Uet al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Epidemiol Infect 2017 ; 145 : 2666–2677. [CrossRef] [PubMed] [Google Scholar]
  75. Fourcade G, Germi R, Guerber Fet al. Evolution of EBV seroprevalence and primary infection age in a French hospital and a city laboratory network, 2000–2016. PLoS One 2017 ; 12 : e0175574. [Google Scholar]
  76. Nowalk A, Green MEpstein-Barr Virus. Microbiol Spectr 2016 ; 4. [Google Scholar]
  77. Antona D, Lepoutre A, Fonteneau Let al. Seroprevalence of cytomegalovirus infection in France in 2010. Epidemiol Infect 2017 ; 145 : 1471–1478. [CrossRef] [PubMed] [Google Scholar]
  78. Agut H, Bonnafous P, Gautheret-Dejean A. Human Herpesviruses 6A, 6B, and 7. Microbiol Spectr 2016; 4. [Google Scholar]
  79. Rohner E, Wyss N, Trelle Set al. HHV-8 seroprevalence: a global view. Syst Rev 2014 ; 3 : 11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.