Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 12, Décembre 2022
Un monde de virus
Page(s) 1008 - 1015
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022165
Publié en ligne 13 décembre 2022
  1. Suttle CA. Marine viruses — major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–812. [CrossRef] [PubMed] [Google Scholar]
  2. Mushegian AR Are There 1031 Virus Particles on Earth, or More, or Fewer?. J Bacteriol 2020 ; 202. [Google Scholar]
  3. Hendrix RW, Smith MCM, Burns RN, et al. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc Natl Acad Sci USA 1999 ; 96 : 2192–2197. [CrossRef] [PubMed] [Google Scholar]
  4. Bergh Ø, BØrsheim KY, Bratbak G, et al. High abundance of viruses found in aquatic environments. Nature 1989 ; 340 : 467–468. [CrossRef] [PubMed] [Google Scholar]
  5. Noble R, Fuhrman J. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 1998 ; 14 : 113–118. [CrossRef] [Google Scholar]
  6. Marie D, Brussaard CPD, Thyrhaug R, et al. Enumeration of Marine Viruses in Culture and Natural Samples by Flow Cytometry. Appl Environ Microbiol 1999 ; 65 : 45–52. [CrossRef] [PubMed] [Google Scholar]
  7. Forterre P, Soler N, Krupovic M, et al. Fake virus particles generated by fluorescence microscopy. Trends Microbiol 2013 ; 21 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  8. Wigington CH, Sonderegger D, Brussaard CPD, et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 2016 ; 1 : 15024. [CrossRef] [PubMed] [Google Scholar]
  9. Hewson I, O’Neil JM, Fuhrman JA, et al. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 2001 ; 46 : 1734–1746. [CrossRef] [Google Scholar]
  10. Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J 2013 ; 7 : 1738–1751. [CrossRef] [PubMed] [Google Scholar]
  11. Gregory AC, Zayed AA, Conceição-Neto N, et al. Marine DNA Viral Macro – and Microdiversity from Pole to Pole. Cell 2019 ; 177 : 1109–1123. [CrossRef] [PubMed] [Google Scholar]
  12. Steward GF, Culley AI, Mueller JA, et al. Are we missing half of the viruses in the ocean?. ISME J 2013 ; 7 : 672–679. [CrossRef] [PubMed] [Google Scholar]
  13. Bachy C, Hehenberger E, Ling Y-C, et al. Marine Protists: A Hitchhiker’s Guide to their Role in the Marine Microbiome. In: Stal LJ, Cretoiu MS (eds). The Marine Microbiome. Cham : Springer International Publishing, 2022 : pp. 159–241. [CrossRef] [Google Scholar]
  14. Zayed AA, Wainaina JM, Dominguez-Huerta G, et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 2022; 376 : 156–62. [CrossRef] [PubMed] [Google Scholar]
  15. Jiang SC, Paul JH. Gene Transfer by Transduction in the Marine Environment. Appl Environ Microbiol 1998 ; 64 : 2780–2787. [CrossRef] [PubMed] [Google Scholar]
  16. Crummett LT, Puxty RJ, Weihe C, et al. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 2016 ; 499 : 219–229. [CrossRef] [Google Scholar]
  17. Puxty RJ, Millard AD, Evans DJ, et al. Shedding new light on viral photosynthesis. Photosynth Res 2015 ; 126 : 71–97. [CrossRef] [PubMed] [Google Scholar]
  18. Mihara T, Koyano H, Hingamp P, et al. Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ 2018 ; 33 : 162–171. [CrossRef] [PubMed] [Google Scholar]
  19. Monier A, Chambouvet A, Milner DS, et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc Natl Acad Sci USA 2017 ; 114 : E7489–E7498. [CrossRef] [PubMed] [Google Scholar]
  20. Bachy C, Charlesworth CJ, Chan AM, et al. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ Microbiol 2018 ; 20 : 2898–2912. [CrossRef] [PubMed] [Google Scholar]
  21. Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology 2018 ; 518 : 423–433. [CrossRef] [Google Scholar]
  22. Yutin N, Koonin EV. Proteorhodopsin genes in giant viruses. Biol Direct 2012 ; 7 : 34. [CrossRef] [PubMed] [Google Scholar]
  23. Needham DM, Yoshizawa S, Hosaka T, et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci USA 2019 ; 116 : 20574–20583. [CrossRef] [PubMed] [Google Scholar]
  24. Griffiths DJ. Endogenous retroviruses in the human genome sequence. Genome Biol 2001 ; 2 : 1–5. [Google Scholar]
  25. Maumus F, Epert A, Nogué F, et al. Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun 2014 ; 5 : 4268. [CrossRef] [PubMed] [Google Scholar]
  26. Filée J.. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: The visible part of the iceberg?. Virology 2014 ; 466–7 : 53–59. [Google Scholar]
  27. Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 2013 ; 3 : 558–565. [CrossRef] [PubMed] [Google Scholar]
  28. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA 2018 ; 115 : 6506–6511. [CrossRef] [PubMed] [Google Scholar]
  29. Aylward FO, Boeuf D, Mende DR, et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci USA 2017 ; 114 : 11446–11451. [CrossRef] [PubMed] [Google Scholar]
  30. Danovaro R, Dell’Anno A, Corinaldesi C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008 ; 454 : 1084–1087. [CrossRef] [PubMed] [Google Scholar]
  31. Short SM. The ecology of viruses that infect eukaryotic algae. Environ Microbiol 2012 ; 14 : 2253–2271. [CrossRef] [PubMed] [Google Scholar]
  32. Thingstad T, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 1997 ; 13 : 19–27. [CrossRef] [Google Scholar]
  33. Mruwat N, Carlson MCG, Goldin S, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J 2021; 15 : 41–54. [CrossRef] [PubMed] [Google Scholar]
  34. Mojica KDA, Huisman J, Wilhelm SW, et al. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J 2016 ; 10 : 500–513. [CrossRef] [PubMed] [Google Scholar]
  35. Mojica KDA, Brussaard CPD. Factors affecting virus dynamics and microbial host – virus interactions in marine environments. FEMS Microbiol Ecol 2014 ; 89 : 495–515. [CrossRef] [PubMed] [Google Scholar]
  36. Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the SeaViruses play critical roles in the structure and function of aquatic food webs. Bioscience 1999 ; 49 : 781–788. [CrossRef] [Google Scholar]
  37. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature 1999 ; 399 : 541–548. [CrossRef] [PubMed] [Google Scholar]
  38. Suttle CA. Viruses in the sea. Nature 2005 ; 437 : 356–361. [CrossRef] [PubMed] [Google Scholar]
  39. Poorvin L, Rinta-Kanto JM, Hutchins DA, et al. Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr 2004 ; 49 : 1734–1741. [CrossRef] [Google Scholar]
  40. Yamada Y, Tomaru Y, Fukuda H, et al. Aggregate Formation During the Viral Lysis of a Marine Diatom. Front Mar Sci 2018 ; 5 : 167. [CrossRef] [Google Scholar]
  41. Pelusi A, De Luca P, Manfellotto F, et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol 2021; 229 : 2251–9. [CrossRef] [PubMed] [Google Scholar]
  42. Zimmerman AE, Howard-Varona C, Needham DM, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2020; 18 : 21–34. [CrossRef] [PubMed] [Google Scholar]
  43. Guidi L, Chaffron S, Bittner L, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 2016 ; 532 : 465–470. [CrossRef] [PubMed] [Google Scholar]
  44. Trainic M, Koren I, Sharoni S, et al. Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. Iscience 2018 ; 6 : 327–335. [CrossRef] [PubMed] [Google Scholar]
  45. Danovaro R, Corinaldesi C, Dell’anno A, et al. Marine viruses and global climate change. FEMS Microbiol Rev 2011 ; 35 : 993–1034. [CrossRef] [PubMed] [Google Scholar]
  46. Baudoux A-C, Brussaard CPD. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 2005 ; 341 : 80–90. [CrossRef] [Google Scholar]
  47. Arsenieff L, Gall FL, Rigaut-Jalabert F, et al. Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel. ISME J 2020; 1–16. [Google Scholar]
  48. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 2020; 18 : 125–38. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.