Open Access
Med Sci (Paris)
Volume 38, Number 11, Novembre 2022
Page(s) 880 - 887
Section M/S Revues
Published online 30 November 2022
  1. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953 ; 97 : 695-710. [CrossRef] [PubMed] [Google Scholar]
  2. Borrell B. How accurate are cancer cell lines? Nature 2010 ; 463 : 858. [CrossRef] [PubMed] [Google Scholar]
  3. Sutherland RM, Inch WR, McCredie JA, Kruuv J. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med 1970 ; 18 : 491-5. [CrossRef] [PubMed] [Google Scholar]
  4. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015 ; 17 : 1-15. [CrossRef] [PubMed] [Google Scholar]
  5. Freeman AE, Hoffman RM. In vivo-like growth of human tumors in vitro. Proc Natl Acad Sci U S A 1986 ; 83 : 2694-8. [CrossRef] [PubMed] [Google Scholar]
  6. Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 1990 ; 72 : 463-75. [CrossRef] [PubMed] [Google Scholar]
  7. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003 ; 63 : 5821-8. [PubMed] [Google Scholar]
  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003 ; 100 : 3983-8. [CrossRef] [PubMed] [Google Scholar]
  9. Weiswald LB, Richon S, Validire P, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer 2009 ; 101 : 473-82. [CrossRef] [PubMed] [Google Scholar]
  10. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009 ; 459 : 262-5. [CrossRef] [PubMed] [Google Scholar]
  11. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011 ; 141 : 1762-72. [CrossRef] [PubMed] [Google Scholar]
  12. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-derived cancer organoids as predictors of treatment response. Front Oncol 2021 ; 11 : 641980. [CrossRef] [PubMed] [Google Scholar]
  13. Xu H, Lyu X, Yi M, et al. Organoid technology and applications in cancer research. J Hematol Oncol 2018 ; 11 : 116. [CrossRef] [PubMed] [Google Scholar]
  14. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020 ; 15 : 3380-409. [CrossRef] [PubMed] [Google Scholar]
  15. Patel S, Alam A, Pant R, Chattopadhyay S. Wnt signaling and its significance within the tumor microenvironment: Novel therapeutic insights. Front Immunol 2019 ; 10 : 2872. [CrossRef] [PubMed] [Google Scholar]
  16. Barbet V, Broutier L. Future match making: When pediatric oncology meets organoid technology. Front Cell Dev Biol 2021 ; 9 : 674219. [CrossRef] [PubMed] [Google Scholar]
  17. Fan H, Demirci U, Chen P. Emerging organoid models: Leaping forward in cancer research. J Hematol Oncol 2019 ; 12 : 142. [CrossRef] [PubMed] [Google Scholar]
  18. Foo MA, You M, Chan SL, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res 2022 ; 10 : 10. [CrossRef] [PubMed] [Google Scholar]
  19. Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014 ; 159 : 176-87. [CrossRef] [PubMed] [Google Scholar]
  20. Kopper O, de Witte CJ, Lohmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 2019 ; 25 : 838-49. [CrossRef] [PubMed] [Google Scholar]
  21. Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 2016 ; 18 : 827-38. [CrossRef] [PubMed] [Google Scholar]
  22. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015 ; 161 : 933-45. [CrossRef] [PubMed] [Google Scholar]
  23. Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017 ; 23 : 1424-35. [CrossRef] [PubMed] [Google Scholar]
  24. Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018 ; 172 : 373-86 e10. [CrossRef] [PubMed] [Google Scholar]
  25. Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015 ; 521 : 43-7. [CrossRef] [PubMed] [Google Scholar]
  26. Dekkers JF, Whittle JR, Vaillant F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst 2020 ; 112 : 540-4. [CrossRef] [PubMed] [Google Scholar]
  27. Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 2018 ; 22 : 454-67 e6. [CrossRef] [PubMed] [Google Scholar]
  28. Hu T, Shukla SK, Vernucci E, et al. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression. Gastroenterology 2021 ; 161 : 1584-600. [CrossRef] [PubMed] [Google Scholar]
  29. Li F, Li J, Yu J, et al. Identification of ARGLU1 as a potential therapeutic target for gastric cancer based on genome-wide functional screening data. EBioMedicine 2021 ; 69 : 103436. [CrossRef] [PubMed] [Google Scholar]
  30. Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018 ; 173 : 515-28 e17. [CrossRef] [PubMed] [Google Scholar]
  31. Guillon J, Petit C, Toutain B, et al. Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor heterogeneity. Cell Cycle 2019 ; 18 : 2385-97. [CrossRef] [PubMed] [Google Scholar]
  32. Germain N, Dhayer M, Boileau M, et al. Lipid metabolism and resistance to anticancer treatment. Biology (Basel) 2020 ; 9. [PubMed] [Google Scholar]
  33. Strauss J, Figg WD. Epigenetic approaches to overcoming chemotherapy resistance. Lancet Oncol 2015 ; 16 : 1013-5. [CrossRef] [PubMed] [Google Scholar]
  34. El Amrani M, Corfiotti F, Corvaisier M, et al. Gemcitabine-induced epithelial-mesenchymal transition-like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal-like phenotype. Mol Carcinog 2019 ; 58 : 1985-97. [CrossRef] [PubMed] [Google Scholar]
  35. Fernandes M, Jamme P, Cortot AB, et al. When the MET receptor kicks in to resist targeted therapies. Oncogene 2021 ; 40 : 4061-78. [CrossRef] [PubMed] [Google Scholar]
  36. Sundar SJ, Shakya S, Barnett A, et al. Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Transl Oncol 2022 ; 15 : 101251. [CrossRef] [PubMed] [Google Scholar]
  37. Farshadi EA, Chang J, Sampadi B, et al. Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma. Clin Cancer Res 2021 ; 27 : 6602-12. [CrossRef] [PubMed] [Google Scholar]
  38. Huang L, Bockorny B, Paul I, et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 2020 ; 5. [PubMed] [Google Scholar]
  39. Hadj Bachir E, Poiraud C, Paget S, et al. A new pancreatic adenocarcinoma-derived organoid model of acquired chemoresistance to FOLFIRINOX: First insight of the underlying mechanisms. Biol Cell 2022 ; 114 : 32-55. [CrossRef] [PubMed] [Google Scholar]
  40. Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A 2019. [Google Scholar]
  41. Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 2021 ; 40 : 6081-92. [CrossRef] [PubMed] [Google Scholar]
  42. Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 2018 ; 23 : 882-97 e11. [CrossRef] [PubMed] [Google Scholar]
  43. Calandrini C, van Hooff SR, Paassen I, et al. Organoid-based drug screening reveals neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep 2021 ; 36 : 109568. [CrossRef] [PubMed] [Google Scholar]
  44. Vernon M, Lambert B, Meryet-Figuiere M, et al. Functional miRNA screening identifies wide-ranging antitumor properties of miR-3622b-5p and reveals a new therapeutic combination strategy in ovarian tumor organoids. Mol Cancer Ther 2020 ; 19 : 1506-19. [CrossRef] [PubMed] [Google Scholar]
  45. Florent R, Weiswald LB, Lambert B, et al. Bim, Puma and Noxa upregulation by Naftopidil sensitizes ovarian cancer to the BH3-mimetic ABT-737 and the MEK inhibitor Trametinib. Cell Death Dis 2020 ; 11 : 380. [CrossRef] [PubMed] [Google Scholar]
  46. Wambecke A, Ahmad M, Morice PM, et al. The lncRNA ‘UCA1’ modulates the response to chemotherapy of ovarian cancer through direct binding to miR27a-5p and control of UBE2N levels. Mol Oncol 2021. [PubMed] [Google Scholar]
  47. Colella G, Fazioli F, Gallo M, et al. Sarcoma spheroids and organoidspromising tools in the era of personalized medicine. Int J Mol Sci 2018 ; 19. [Google Scholar]
  48. Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021 ; 132 : 37-51. [CrossRef] [PubMed] [Google Scholar]
  49. Qu J, Kalyani FS, Liu L, et al. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun (Lond) 2021 ; 41 : 1331-53. [CrossRef] [PubMed] [Google Scholar]
  50. Liu L, Yu L, Li Z, et al. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med 2021 ; 19 : 40. [CrossRef] [PubMed] [Google Scholar]
  51. Wang J, Chen C, Wang L, et al. Patient-derived tumor organoids: New progress and opportunities to facilitate precision cancer immunotherapy. Front Oncol 2022 ; 12 : 872531. [CrossRef] [PubMed] [Google Scholar]
  52. Lazzari G, Nicolas V, Matsusaki M, et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 2018 ; 78 : 296-307. [CrossRef] [PubMed] [Google Scholar]
  53. Huang YL, Shiau C, Wu C, et al. The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix. Biophys Rev Lett 2020 ; 15 : 131-41. [CrossRef] [PubMed] [Google Scholar]
  54. Fiorini E, Veghini L, Corbo V. Modeling cell communication in cancer with organoids: Making the complex simple. Front Cell Dev Biol 2020 ; 8 : 166. [CrossRef] [PubMed] [Google Scholar]
  55. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell 2018 ; 175 : 1972-88 e16. [CrossRef] [PubMed] [Google Scholar]
  56. Jordan B. Henrietta Lacks. Med Sci (Paris) 2021 ; 37 : 1189-93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.