Organoïdes
Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 11, Novembre 2022
Organoïdes
Page(s) 880 - 887
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022148
Publié en ligne 30 novembre 2022
  1. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953 ; 97 : 695-710. [CrossRef] [PubMed] [Google Scholar]
  2. Borrell B. How accurate are cancer cell lines? Nature 2010 ; 463 : 858. [CrossRef] [PubMed] [Google Scholar]
  3. Sutherland RM, Inch WR, McCredie JA, Kruuv J. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med 1970 ; 18 : 491-5. [CrossRef] [PubMed] [Google Scholar]
  4. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015 ; 17 : 1-15. [CrossRef] [PubMed] [Google Scholar]
  5. Freeman AE, Hoffman RM. In vivo-like growth of human tumors in vitro. Proc Natl Acad Sci U S A 1986 ; 83 : 2694-8. [CrossRef] [PubMed] [Google Scholar]
  6. Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 1990 ; 72 : 463-75. [CrossRef] [PubMed] [Google Scholar]
  7. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003 ; 63 : 5821-8. [PubMed] [Google Scholar]
  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003 ; 100 : 3983-8. [CrossRef] [PubMed] [Google Scholar]
  9. Weiswald LB, Richon S, Validire P, et al. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer 2009 ; 101 : 473-82. [CrossRef] [PubMed] [Google Scholar]
  10. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009 ; 459 : 262-5. [CrossRef] [PubMed] [Google Scholar]
  11. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011 ; 141 : 1762-72. [CrossRef] [PubMed] [Google Scholar]
  12. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-derived cancer organoids as predictors of treatment response. Front Oncol 2021 ; 11 : 641980. [CrossRef] [PubMed] [Google Scholar]
  13. Xu H, Lyu X, Yi M, et al. Organoid technology and applications in cancer research. J Hematol Oncol 2018 ; 11 : 116. [CrossRef] [PubMed] [Google Scholar]
  14. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020 ; 15 : 3380-409. [CrossRef] [PubMed] [Google Scholar]
  15. Patel S, Alam A, Pant R, Chattopadhyay S. Wnt signaling and its significance within the tumor microenvironment: Novel therapeutic insights. Front Immunol 2019 ; 10 : 2872. [CrossRef] [PubMed] [Google Scholar]
  16. Barbet V, Broutier L. Future match making: When pediatric oncology meets organoid technology. Front Cell Dev Biol 2021 ; 9 : 674219. [CrossRef] [PubMed] [Google Scholar]
  17. Fan H, Demirci U, Chen P. Emerging organoid models: Leaping forward in cancer research. J Hematol Oncol 2019 ; 12 : 142. [CrossRef] [PubMed] [Google Scholar]
  18. Foo MA, You M, Chan SL, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res 2022 ; 10 : 10. [CrossRef] [PubMed] [Google Scholar]
  19. Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014 ; 159 : 176-87. [CrossRef] [PubMed] [Google Scholar]
  20. Kopper O, de Witte CJ, Lohmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 2019 ; 25 : 838-49. [CrossRef] [PubMed] [Google Scholar]
  21. Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 2016 ; 18 : 827-38. [CrossRef] [PubMed] [Google Scholar]
  22. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015 ; 161 : 933-45. [CrossRef] [PubMed] [Google Scholar]
  23. Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017 ; 23 : 1424-35. [CrossRef] [PubMed] [Google Scholar]
  24. Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018 ; 172 : 373-86 e10. [CrossRef] [PubMed] [Google Scholar]
  25. Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015 ; 521 : 43-7. [CrossRef] [PubMed] [Google Scholar]
  26. Dekkers JF, Whittle JR, Vaillant F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst 2020 ; 112 : 540-4. [CrossRef] [PubMed] [Google Scholar]
  27. Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 2018 ; 22 : 454-67 e6. [CrossRef] [PubMed] [Google Scholar]
  28. Hu T, Shukla SK, Vernucci E, et al. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression. Gastroenterology 2021 ; 161 : 1584-600. [CrossRef] [PubMed] [Google Scholar]
  29. Li F, Li J, Yu J, et al. Identification of ARGLU1 as a potential therapeutic target for gastric cancer based on genome-wide functional screening data. EBioMedicine 2021 ; 69 : 103436. [CrossRef] [PubMed] [Google Scholar]
  30. Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018 ; 173 : 515-28 e17. [CrossRef] [PubMed] [Google Scholar]
  31. Guillon J, Petit C, Toutain B, et al. Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor heterogeneity. Cell Cycle 2019 ; 18 : 2385-97. [CrossRef] [PubMed] [Google Scholar]
  32. Germain N, Dhayer M, Boileau M, et al. Lipid metabolism and resistance to anticancer treatment. Biology (Basel) 2020 ; 9. [PubMed] [Google Scholar]
  33. Strauss J, Figg WD. Epigenetic approaches to overcoming chemotherapy resistance. Lancet Oncol 2015 ; 16 : 1013-5. [CrossRef] [PubMed] [Google Scholar]
  34. El Amrani M, Corfiotti F, Corvaisier M, et al. Gemcitabine-induced epithelial-mesenchymal transition-like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal-like phenotype. Mol Carcinog 2019 ; 58 : 1985-97. [CrossRef] [PubMed] [Google Scholar]
  35. Fernandes M, Jamme P, Cortot AB, et al. When the MET receptor kicks in to resist targeted therapies. Oncogene 2021 ; 40 : 4061-78. [CrossRef] [PubMed] [Google Scholar]
  36. Sundar SJ, Shakya S, Barnett A, et al. Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Transl Oncol 2022 ; 15 : 101251. [CrossRef] [PubMed] [Google Scholar]
  37. Farshadi EA, Chang J, Sampadi B, et al. Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma. Clin Cancer Res 2021 ; 27 : 6602-12. [CrossRef] [PubMed] [Google Scholar]
  38. Huang L, Bockorny B, Paul I, et al. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 2020 ; 5. [PubMed] [Google Scholar]
  39. Hadj Bachir E, Poiraud C, Paget S, et al. A new pancreatic adenocarcinoma-derived organoid model of acquired chemoresistance to FOLFIRINOX: First insight of the underlying mechanisms. Biol Cell 2022 ; 114 : 32-55. [CrossRef] [PubMed] [Google Scholar]
  40. Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A 2019. [Google Scholar]
  41. Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 2021 ; 40 : 6081-92. [CrossRef] [PubMed] [Google Scholar]
  42. Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 2018 ; 23 : 882-97 e11. [CrossRef] [PubMed] [Google Scholar]
  43. Calandrini C, van Hooff SR, Paassen I, et al. Organoid-based drug screening reveals neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep 2021 ; 36 : 109568. [CrossRef] [PubMed] [Google Scholar]
  44. Vernon M, Lambert B, Meryet-Figuiere M, et al. Functional miRNA screening identifies wide-ranging antitumor properties of miR-3622b-5p and reveals a new therapeutic combination strategy in ovarian tumor organoids. Mol Cancer Ther 2020 ; 19 : 1506-19. [CrossRef] [PubMed] [Google Scholar]
  45. Florent R, Weiswald LB, Lambert B, et al. Bim, Puma and Noxa upregulation by Naftopidil sensitizes ovarian cancer to the BH3-mimetic ABT-737 and the MEK inhibitor Trametinib. Cell Death Dis 2020 ; 11 : 380. [CrossRef] [PubMed] [Google Scholar]
  46. Wambecke A, Ahmad M, Morice PM, et al. The lncRNA ‘UCA1’ modulates the response to chemotherapy of ovarian cancer through direct binding to miR27a-5p and control of UBE2N levels. Mol Oncol 2021. [PubMed] [Google Scholar]
  47. Colella G, Fazioli F, Gallo M, et al. Sarcoma spheroids and organoidspromising tools in the era of personalized medicine. Int J Mol Sci 2018 ; 19. [Google Scholar]
  48. Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021 ; 132 : 37-51. [CrossRef] [PubMed] [Google Scholar]
  49. Qu J, Kalyani FS, Liu L, et al. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun (Lond) 2021 ; 41 : 1331-53. [CrossRef] [PubMed] [Google Scholar]
  50. Liu L, Yu L, Li Z, et al. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med 2021 ; 19 : 40. [CrossRef] [PubMed] [Google Scholar]
  51. Wang J, Chen C, Wang L, et al. Patient-derived tumor organoids: New progress and opportunities to facilitate precision cancer immunotherapy. Front Oncol 2022 ; 12 : 872531. [CrossRef] [PubMed] [Google Scholar]
  52. Lazzari G, Nicolas V, Matsusaki M, et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 2018 ; 78 : 296-307. [CrossRef] [PubMed] [Google Scholar]
  53. Huang YL, Shiau C, Wu C, et al. The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix. Biophys Rev Lett 2020 ; 15 : 131-41. [CrossRef] [PubMed] [Google Scholar]
  54. Fiorini E, Veghini L, Corbo V. Modeling cell communication in cancer with organoids: Making the complex simple. Front Cell Dev Biol 2020 ; 8 : 166. [CrossRef] [PubMed] [Google Scholar]
  55. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell 2018 ; 175 : 1972-88 e16. [CrossRef] [PubMed] [Google Scholar]
  56. Jordan B. Henrietta Lacks. Med Sci (Paris) 2021 ; 37 : 1189-93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.