Open Access
Med Sci (Paris)
Volume 38, Number 11, Novembre 2022
Page(s) 888 - 895
Section M/S Revues
Published online 30 November 2022
  1. Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol Diagn Ther 2018 ; 22 : 1-10. [CrossRef] [PubMed] [Google Scholar]
  2. Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018 ; 174 : 1034-5. [CrossRef] [PubMed] [Google Scholar]
  3. Letai A, Bhola P, Welm AL. Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 2022 ; 40 : 26-35. [CrossRef] [PubMed] [Google Scholar]
  4. Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med 2016 ; 375 : 2154-64. [CrossRef] [PubMed] [Google Scholar]
  5. Federici G, Soddu S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. J Exp Clin Cancer Res 2020 ; 39 : 46. [CrossRef] [PubMed] [Google Scholar]
  6. Alkema NG, Wisman GB, van der Zee AG, et al. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resist Updat 2016 ; 24 : 55-69. [CrossRef] [PubMed] [Google Scholar]
  7. Ugurel S, Schadendorf D, Pfohler C, et al. In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group. Clin Cancer Res 2006 ; 12 : 5454-63. [CrossRef] [PubMed] [Google Scholar]
  8. Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015 ; 17 : 1-15. [CrossRef] [PubMed] [Google Scholar]
  9. Lheureux S, N’Diaye M, Blanc-Fournier C, et al. Identification of predictive factors of response to the BH3-mimetic molecule ABT-737: an ex vivo experiment in human serous ovarian carcinoma. Int J Cancer 2015 ; 136 : E340-50. [CrossRef] [PubMed] [Google Scholar]
  10. Majumder B, Baraneedharan U, Thiyagarajan S, et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 2015 ; 6 : 6169. [CrossRef] [PubMed] [Google Scholar]
  11. Vaira V, Fedele G, Pyne S, et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci U S A 2010 ; 107 : 8352-6. [CrossRef] [PubMed] [Google Scholar]
  12. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 2014 ; 24 : 68-73. [CrossRef] [PubMed] [Google Scholar]
  13. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem Biol 2017 ; 24 : 1092-100. [CrossRef] [PubMed] [Google Scholar]
  14. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-Derived Cancer Organoids as Predictors of Treatment Response. Front Oncol 2021 ; 11 : 641980. [CrossRef] [PubMed] [Google Scholar]
  15. Wensink GE, Elias SG, Mullenders J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis Oncol 2021 ; 5 : 30. [CrossRef] [PubMed] [Google Scholar]
  16. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018 ; 359 : 920-6. [CrossRef] [PubMed] [Google Scholar]
  17. Beutel AK, Schutte L, Scheible J, et al. A Prospective Feasibility Trial to Challenge Patient-Derived Pancreatic Cancer Organoids in Predicting Treatment Response. Cancers (Basel) 2021 ; 13. [Google Scholar]
  18. Park M, Kwon J, Kong J, et al. A Patient-Derived Organoid-Based Radiosensitivity Model for the Prediction of Radiation Responses in Patients with Rectal Cancer. Cancers (Basel) 2021 ; 13. [PubMed] [Google Scholar]
  19. Driehuis E, Kolders S, Spelier S, et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov 2019 ; 9 : 852-71. [CrossRef] [PubMed] [Google Scholar]
  20. Yao Y, Xu X, Yang L, et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell 2020 ; 26 : 17-26 e6. [CrossRef] [PubMed] [Google Scholar]
  21. Votanopoulos KI, Forsythe S, Sivakumar H, et al. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Ann Surg Oncol 2020 ; 27 : 1956-67. [CrossRef] [PubMed] [Google Scholar]
  22. Forsythe SD, Erali RA, Sasikumar S, et al. Organoid Platform in Preclinical Investigation of Personalized Immunotherapy Efficacy in Appendiceal Cancer: Feasibility Study. Clin Cancer Res 2021 ; 27 : 5141-50. [CrossRef] [PubMed] [Google Scholar]
  23. Hill SJ, Decker B, Roberts EA, et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov 2018 ; 8 : 1404-21. [CrossRef] [PubMed] [Google Scholar]
  24. Kopper O, de Witte CJ, Lohmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 2019 ; 25 : 838-49. [CrossRef] [PubMed] [Google Scholar]
  25. Mauri G, Durinikova E, Amatu A, et al. Empowering Clinical Decision Making in Oligometastatic Colorectal Cancer: The Potential Role of Drug Screening of Patient-Derived Organoids. JCO Precis Oncol 2021 ; 5. [PubMed] [Google Scholar]
  26. Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med 2019 ; 11. [PubMed] [Google Scholar]
  27. Ooft SN, Weeber F, Schipper L, et al. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open 2021 ; 6 : 100103. [CrossRef] [PubMed] [Google Scholar]
  28. Braun LM, Lagies S, Klar RFU, et al. Metabolic Profiling of Early and Late Recurrent Pancreatic Ductal Adenocarcinoma Using Patient-Derived Organoid Cultures. Cancers (Basel) 2020 ; 12. [PubMed] [Google Scholar]
  29. Kong J, Lee H, Kim D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020 ; 11 : 5485. [CrossRef] [PubMed] [Google Scholar]
  30. Li L, Knutsdottir H, Hui K, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 2019 ; 4. [PubMed] [Google Scholar]
  31. de Witte CJ, Espejo Valle-Inclan J, Hami N, et al. Patient-Derived Ovarian Cancer Organoids Mimic Clinical Response and Exhibit Heterogeneous Inter- and Intrapatient Drug Responses. Cell Rep 2020 ; 31 : 107762. [CrossRef] [PubMed] [Google Scholar]
  32. Tiriac H, Belleau P, Engle DD, et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 2018 ; 8 : 1112-29. [CrossRef] [PubMed] [Google Scholar]
  33. Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 2019 ; 10 : 3991. [CrossRef] [PubMed] [Google Scholar]
  34. Dijkstra KK, Monkhorst K, Schipper LJ, et al. Challenges in Establishing Pure Lung Cancer Organoids Limit Their Utility for Personalized Medicine. Cell Rep 2020 ; 31 : 107588. [CrossRef] [PubMed] [Google Scholar]
  35. Colella G, Fazioli F, Gallo M, et al. Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci 2018 ; 19. [Google Scholar]
  36. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020 ; 15 : 3380-409. [CrossRef] [PubMed] [Google Scholar]
  37. Larsen BM, Kannan M, Langer LF, et al. A pan-cancer organoid platform for precision medicine. Cell Rep 2021 ; 36 : 109429. [CrossRef] [PubMed] [Google Scholar]
  38. Hu Y, Sui X, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun 2021 ; 12 : 2581. [CrossRef] [PubMed] [Google Scholar]
  39. Larsen BM, Cancino A, Shaxted JM, Salahudeen AA. Protocol for drug screening of patient-derived tumor organoids using high-content fluorescent imaging. STAR Protoc 2022 ; 3 : 101407. [CrossRef] [PubMed] [Google Scholar]
  40. Cattaneo CM, Dijkstra KK, Fanchi LF, et al. Tumor organoid-T-cell coculture systems. Nat Protoc 2020 ; 15 : 15-39. [CrossRef] [PubMed] [Google Scholar]
  41. Tsai S, McOlash L, Palen K, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 2018 ; 18 : 335. [CrossRef] [PubMed] [Google Scholar]
  42. Truelsen SLB, Mousavi N, Wei H, et al. The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids. PLoS One 2021 ; 16 : e0253258. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.