Open Access
Issue
Med Sci (Paris)
Volume 38, Number 10, Octobre 2022
Page(s) 777 - 785
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022122
Published online 11 October 2022
  1. Tenaillon O, Matic I. The impact of neutral mutations on genome evolvability. Curr Biol 2020 ; 30 : R527–4. [CrossRef] [PubMed] [Google Scholar]
  2. Wagner A. Robustness and evolvability: A paradox resolved. Proc R Soc B Biol Sci 2008 ; 275 : 91–100. [CrossRef] [PubMed] [Google Scholar]
  3. Lenski RE, Barrick JE, Ofria C. Balancing robustness and evolvability. PLoS Biol 2006 ; 4 : e428. [CrossRef] [PubMed] [Google Scholar]
  4. de Visser JA, Hermisson J, Wagner GP et al. Perspective: Evolution and detection of genetic robustness. Evol Int J Org Evol 2003 ; 57 : 1959–1972. [CrossRef] [PubMed] [Google Scholar]
  5. Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A 1996 ; 93 : 397–401. [CrossRef] [PubMed] [Google Scholar]
  6. Wilke CO. Adaptive evolution on neutral networks. Bull Math Biol 2001 ; 63 : 715–730. [CrossRef] [PubMed] [Google Scholar]
  7. Hofacker IL, Fontana W, Stadler PF et al. Fast folding and comparison of RNA secondary structures. Monatshefte Für Chem Chem Mon 1994 ; 125 : 167–188. [CrossRef] [Google Scholar]
  8. Wagner A. The molecular origins of evolutionary innovations. Trends Genet 2011 ; 27 : 397–410. [CrossRef] [PubMed] [Google Scholar]
  9. Zheng J, Payne JL, Wagner A. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 2019 ; 365 : 347–353. [CrossRef] [PubMed] [Google Scholar]
  10. Cambray G, Mazel D. Synonymous genes explore different evolutionary landscapes. PLoS Genet 2008 ; 4 : e1000256. [CrossRef] [PubMed] [Google Scholar]
  11. Dykhuizen DE, Dean AM, Hartl DL. Metabolic flux and fitness. Genetics 1987 ; 115 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  12. Kemble H, Eisenhauer C, Couce A, et al. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. Sci Adv 2020 ; 6 : eabb2236. [CrossRef] [PubMed] [Google Scholar]
  13. Tokuriki N, Stricher F, Serrano L et al. How protein stability and new functions trade off. PLoS Comput Biol 2008 ; 4 : e1000002. [CrossRef] [PubMed] [Google Scholar]
  14. Jacquier H, Birgy A, Nagard HL et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci U S A 2013 ; 110 : 13067–13072. [CrossRef] [PubMed] [Google Scholar]
  15. Weinreich DM, Delaney NF, Depristo MA et al. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 2006 ; 312 : 111–114. [CrossRef] [PubMed] [Google Scholar]
  16. Payne JL, Wagner A. The causes of evolvability and their evolution. Nat Rev Genet 2019 ; 20 : 24–38. [CrossRef] [PubMed] [Google Scholar]
  17. Couce A, Caudwell LV, Feinauer C et al. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A 2017 ; 114 : E9026–E9035. [CrossRef] [PubMed] [Google Scholar]
  18. Sung W, Ackerman MS, Gout J-F et al. Asymmetric context-dependent mutation patterns revealed through mutation-accumulation experiments. Mol Biol Evol 2015 ; 32 : 1672–1683. [CrossRef] [PubMed] [Google Scholar]
  19. Blake RD, Hess ST, Nicholson-Tuell J. The influence of nearest neighbors on the rate and pattern of spontaneous point mutations. J Mol Evol 1992 ; 34 : 189–200. [CrossRef] [PubMed] [Google Scholar]
  20. Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998 ; 63 : 474–488. [CrossRef] [PubMed] [Google Scholar]
  21. Radman M, Wagner R. Mismatch repair in Escherichia Coli. Annu Rev Genet 1986 ; 20 : 523–538. [CrossRef] [PubMed] [Google Scholar]
  22. Donigan KA, Sweasy JB. Sequence context-specific mutagenesis and base excision repair. Mol Carcinog 2009 ; 48 : 362–368. [CrossRef] [PubMed] [Google Scholar]
  23. Mendelman LV, Boosalis MS, Petruska J et al. Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem 1989 ; 264 : 14415–14423. [CrossRef] [PubMed] [Google Scholar]
  24. Hoede C, Denamur E, Tenaillon O. Selection acts on DNA secondary structures to decrease transcriptional mutagenesis. PLoS Genet 2006 ; 2 : [Google Scholar]
  25. Wright BE, Reschke DK, Schmidt KH et al. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 2003 ; 48 : 429–441. [CrossRef] [PubMed] [Google Scholar]
  26. Kowalczykowski SC. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect Biol 2015 ; 7 : a016410. [CrossRef] [Google Scholar]
  27. Lee JY, Terakawa T, Qi Z et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 2015 ; 349 : 977–981. [CrossRef] [PubMed] [Google Scholar]
  28. Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 1984 ; 4 : 2253–2258. [PubMed] [Google Scholar]
  29. Sagi D, Tlusty T, Stavans J. High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity. Nucleic Acids Res 2006 ; 34 : 5021. [CrossRef] [PubMed] [Google Scholar]
  30. Vulic M, Dionisio F, Taddei F et al. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 1997 ; 94 : 9763–9767. [CrossRef] [PubMed] [Google Scholar]
  31. Shen P, Huang HV. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol Gen Genet 1989 ; 218 : 358–360. [CrossRef] [PubMed] [Google Scholar]
  32. Shao C, Stambrook PJ, Tischfield JA. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nat Genet 2001 ; 28 : 169–172. [CrossRef] [PubMed] [Google Scholar]
  33. Mandegar Mohammad A, Otto Sarah P. Mitotic recombination counteracts the benefits of genetic segregation. Proc R Soc B Biol Sci 2007; 274 : 1301–7. [CrossRef] [PubMed] [Google Scholar]
  34. Ryland GL, Doyle MA, Goode D et al. Loss of heterozygosity: What is it good for?. BMC Med Genomics 2015 ; 8 : 45. [CrossRef] [PubMed] [Google Scholar]
  35. Horton JS, Flanagan LM, Jackson RW, et al. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021 ; 12 : 6092. [CrossRef] [PubMed] [Google Scholar]
  36. Reich D Who We Are and How We Got Here: Ancient DNA and the new science of the human past Oxford : Oxford University Press, 2018 : 368 p. [Google Scholar]
  37. Delmas S, Matic I. Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems. DNA Repair 2005 ; 4 : 221–229. [CrossRef] [PubMed] [Google Scholar]
  38. Zawadzki P, Roberts MS, Cohan FM. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 1995 ; 140 : 917–932. [CrossRef] [PubMed] [Google Scholar]
  39. Majewski J, Zawadzki P, Pickerill P et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 2000 ; 182 : 1016–1023. [CrossRef] [PubMed] [Google Scholar]
  40. Dixit PD, Pang TY, Maslov S. Recombination-driven genome evolution and stability of bacterial species. Genetics 2017 ; 207 : 281–295. [CrossRef] [PubMed] [Google Scholar]
  41. Daniel Falush, Mia Torpdahl, Xavier Didelot et al. Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc B Biol Sci 2006 ; 361 : 2045–2053. [CrossRef] [PubMed] [Google Scholar]
  42. Hunter N, Chambers SR, Louis EJ et al. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 1996 ; 15 : 1726–1733. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.