Open Access
Numéro |
Med Sci (Paris)
Volume 38, Numéro 10, Octobre 2022
|
|
---|---|---|
Page(s) | 777 - 785 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022122 | |
Publié en ligne | 11 octobre 2022 |
- Tenaillon O, Matic I. The impact of neutral mutations on genome evolvability. Curr Biol 2020 ; 30 : R527–4. [CrossRef] [PubMed] [Google Scholar]
- Wagner A. Robustness and evolvability: A paradox resolved. Proc R Soc B Biol Sci 2008 ; 275 : 91–100. [CrossRef] [PubMed] [Google Scholar]
- Lenski RE, Barrick JE, Ofria C. Balancing robustness and evolvability. PLoS Biol 2006 ; 4 : e428. [CrossRef] [PubMed] [Google Scholar]
- de Visser JA, Hermisson J, Wagner GP et al. Perspective: Evolution and detection of genetic robustness. Evol Int J Org Evol 2003 ; 57 : 1959–1972. [CrossRef] [PubMed] [Google Scholar]
- Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A 1996 ; 93 : 397–401. [CrossRef] [PubMed] [Google Scholar]
- Wilke CO. Adaptive evolution on neutral networks. Bull Math Biol 2001 ; 63 : 715–730. [CrossRef] [PubMed] [Google Scholar]
- Hofacker IL, Fontana W, Stadler PF et al. Fast folding and comparison of RNA secondary structures. Monatshefte Für Chem Chem Mon 1994 ; 125 : 167–188. [CrossRef] [Google Scholar]
- Wagner A. The molecular origins of evolutionary innovations. Trends Genet 2011 ; 27 : 397–410. [CrossRef] [PubMed] [Google Scholar]
- Zheng J, Payne JL, Wagner A. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 2019 ; 365 : 347–353. [CrossRef] [PubMed] [Google Scholar]
- Cambray G, Mazel D. Synonymous genes explore different evolutionary landscapes. PLoS Genet 2008 ; 4 : e1000256. [CrossRef] [PubMed] [Google Scholar]
- Dykhuizen DE, Dean AM, Hartl DL. Metabolic flux and fitness. Genetics 1987 ; 115 : 25–31. [CrossRef] [PubMed] [Google Scholar]
- Kemble H, Eisenhauer C, Couce A, et al. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. Sci Adv 2020 ; 6 : eabb2236. [CrossRef] [PubMed] [Google Scholar]
- Tokuriki N, Stricher F, Serrano L et al. How protein stability and new functions trade off. PLoS Comput Biol 2008 ; 4 : e1000002. [CrossRef] [PubMed] [Google Scholar]
- Jacquier H, Birgy A, Nagard HL et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci U S A 2013 ; 110 : 13067–13072. [CrossRef] [PubMed] [Google Scholar]
- Weinreich DM, Delaney NF, Depristo MA et al. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 2006 ; 312 : 111–114. [CrossRef] [PubMed] [Google Scholar]
- Payne JL, Wagner A. The causes of evolvability and their evolution. Nat Rev Genet 2019 ; 20 : 24–38. [CrossRef] [PubMed] [Google Scholar]
- Couce A, Caudwell LV, Feinauer C et al. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A 2017 ; 114 : E9026–E9035. [CrossRef] [PubMed] [Google Scholar]
- Sung W, Ackerman MS, Gout J-F et al. Asymmetric context-dependent mutation patterns revealed through mutation-accumulation experiments. Mol Biol Evol 2015 ; 32 : 1672–1683. [CrossRef] [PubMed] [Google Scholar]
- Blake RD, Hess ST, Nicholson-Tuell J. The influence of nearest neighbors on the rate and pattern of spontaneous point mutations. J Mol Evol 1992 ; 34 : 189–200. [CrossRef] [PubMed] [Google Scholar]
- Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998 ; 63 : 474–488. [CrossRef] [PubMed] [Google Scholar]
- Radman M, Wagner R. Mismatch repair in Escherichia Coli. Annu Rev Genet 1986 ; 20 : 523–538. [CrossRef] [PubMed] [Google Scholar]
- Donigan KA, Sweasy JB. Sequence context-specific mutagenesis and base excision repair. Mol Carcinog 2009 ; 48 : 362–368. [CrossRef] [PubMed] [Google Scholar]
- Mendelman LV, Boosalis MS, Petruska J et al. Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem 1989 ; 264 : 14415–14423. [CrossRef] [PubMed] [Google Scholar]
- Hoede C, Denamur E, Tenaillon O. Selection acts on DNA secondary structures to decrease transcriptional mutagenesis. PLoS Genet 2006 ; 2 : [Google Scholar]
- Wright BE, Reschke DK, Schmidt KH et al. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 2003 ; 48 : 429–441. [CrossRef] [PubMed] [Google Scholar]
- Kowalczykowski SC. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect Biol 2015 ; 7 : a016410. [CrossRef] [Google Scholar]
- Lee JY, Terakawa T, Qi Z et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 2015 ; 349 : 977–981. [CrossRef] [PubMed] [Google Scholar]
- Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 1984 ; 4 : 2253–2258. [PubMed] [Google Scholar]
- Sagi D, Tlusty T, Stavans J. High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity. Nucleic Acids Res 2006 ; 34 : 5021. [CrossRef] [PubMed] [Google Scholar]
- Vulic M, Dionisio F, Taddei F et al. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 1997 ; 94 : 9763–9767. [CrossRef] [PubMed] [Google Scholar]
- Shen P, Huang HV. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol Gen Genet 1989 ; 218 : 358–360. [CrossRef] [PubMed] [Google Scholar]
- Shao C, Stambrook PJ, Tischfield JA. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nat Genet 2001 ; 28 : 169–172. [CrossRef] [PubMed] [Google Scholar]
- Mandegar Mohammad A, Otto Sarah P. Mitotic recombination counteracts the benefits of genetic segregation. Proc R Soc B Biol Sci 2007; 274 : 1301–7. [CrossRef] [PubMed] [Google Scholar]
- Ryland GL, Doyle MA, Goode D et al. Loss of heterozygosity: What is it good for?. BMC Med Genomics 2015 ; 8 : 45. [CrossRef] [PubMed] [Google Scholar]
- Horton JS, Flanagan LM, Jackson RW, et al. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021 ; 12 : 6092. [CrossRef] [PubMed] [Google Scholar]
- Reich D Who We Are and How We Got Here: Ancient DNA and the new science of the human past Oxford : Oxford University Press, 2018 : 368 p. [Google Scholar]
- Delmas S, Matic I. Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems. DNA Repair 2005 ; 4 : 221–229. [CrossRef] [PubMed] [Google Scholar]
- Zawadzki P, Roberts MS, Cohan FM. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 1995 ; 140 : 917–932. [CrossRef] [PubMed] [Google Scholar]
- Majewski J, Zawadzki P, Pickerill P et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 2000 ; 182 : 1016–1023. [CrossRef] [PubMed] [Google Scholar]
- Dixit PD, Pang TY, Maslov S. Recombination-driven genome evolution and stability of bacterial species. Genetics 2017 ; 207 : 281–295. [CrossRef] [PubMed] [Google Scholar]
- Daniel Falush, Mia Torpdahl, Xavier Didelot et al. Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc B Biol Sci 2006 ; 361 : 2045–2053. [CrossRef] [PubMed] [Google Scholar]
- Hunter N, Chambers SR, Louis EJ et al. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 1996 ; 15 : 1726–1733. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.