Open Access
Numéro |
Med Sci (Paris)
Volume 38, Numéro 10, Octobre 2022
|
|
---|---|---|
Page(s) | 786 - 794 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022104 | |
Publié en ligne | 11 octobre 2022 |
- Hemonnot-Girard AL, Ben Haim L, Escartin C, et al. De nouvelles techniques pour dévoiler le rôle des cellules gliales du cerveau. Med Sci (Paris) 2021 ; 37 : 59–67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hirbec H, Déglon N, Foo LC, et al. Emerging technologies to study glial cells. Glia 2020 ; 68 : 1692–728. [CrossRef] [PubMed] [Google Scholar]
- Escartin C, Guillemaud O. Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019 ; 67 : 2221–2247. [CrossRef] [PubMed] [Google Scholar]
- Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021 ; 24 : 312–25. [CrossRef] [PubMed] [Google Scholar]
- Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018 ; 98 : 239–389. [CrossRef] [PubMed] [Google Scholar]
- Ghézali G, Dallérac G, Rouach N. Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 2016 ; 221 : 2427–2442. [CrossRef] [PubMed] [Google Scholar]
- Cohen-Salmon M, Slaoui L, Mazaré N, et al. Astrocytes in the regulation of cerebrovascular functions. Glia 2021 ; 69 : 817–41. [CrossRef] [PubMed] [Google Scholar]
- Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021 ; 44 : 781–92. [CrossRef] [PubMed] [Google Scholar]
- Mazare N, Oudart M, Cohen-Salmon M. Local translation in perisynaptic and perivascular astrocytic processes - a means to ensure astrocyte molecular and functional polarity? J Cell Sci 2021 ; 134. [Google Scholar]
- Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci 2018 ; 21 : 9–15. [CrossRef] [PubMed] [Google Scholar]
- Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015 ; 32 : 121–130. [CrossRef] [PubMed] [Google Scholar]
- Zamanian JL, Xu L, Foo LC et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012 ; 32 : 6391–6410. [CrossRef] [PubMed] [Google Scholar]
- Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, et al. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015 ; 9 : 278. [CrossRef] [PubMed] [Google Scholar]
- Shandra O, Winemiller AR, Heithoff BP et al. Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and Spontaneous Recurrent Seizures. J Neurosci 2019 ; 39 : 1944–1963. [CrossRef] [PubMed] [Google Scholar]
- Khakh BS, Deneen B. The Emerging Nature of Astrocyte Diversity. Annu Rev Neurosci 2019 ; 42 : 187–207. [CrossRef] [PubMed] [Google Scholar]
- Wilhelmsson U, Bushong EA, Price DL et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 2006 ; 103 : 17513–17518. [CrossRef] [PubMed] [Google Scholar]
- Ceyzériat K, Abjean L, Carrillo-de Sauvage MA et al. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?. Neuroscience 2016 ; 330 : 205–218. [CrossRef] [PubMed] [Google Scholar]
- Salvador AF, Lima KA de, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 2021 ; 21 : 526–41. [CrossRef] [PubMed] [Google Scholar]
- Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019 ; 50 : 955–974. [CrossRef] [PubMed] [Google Scholar]
- Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022 2022 ; 1–20. [Google Scholar]
- Kuchibhotla K v., Lattarulo CR, Hyman BT, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009 ; 323 : 1211–5. [CrossRef] [PubMed] [Google Scholar]
- Arizono M, Idziak A, Nägerl UV. Il faut être trois pour danser le tango - Illuminer les signaux Ca2+ des synapses tripartites. Med Sci (Paris) 2021 ; 37 : 127–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020 ; 21 : 1–32. [Google Scholar]
- Abjean L, Ben Haim L, Riquelme-Perez M, et al. Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway. Brain 2022. https://doi.org/10.1093/brain/awac068. [PubMed] [Google Scholar]
- Colombo E, Cordiglieri C, Melli G et al. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J Exp Med 2012 ; 209 : 521–535. [CrossRef] [PubMed] [Google Scholar]
- Liddelow SA, Guttenplan KA, Clarke LE et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 ; 541 : 481–487. [CrossRef] [PubMed] [Google Scholar]
- Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 2017 ; 18 : 31–41. [CrossRef] [PubMed] [Google Scholar]
- Anderson MA, Burda JE, Ren Y et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016 ; 532 : 195–200. [CrossRef] [PubMed] [Google Scholar]
- Ceyzériat K, Ben Haim L, Denizot A et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 2018 ; 6 : 104. [CrossRef] [PubMed] [Google Scholar]
- Guillemaud O, Ceyzériat K, Saint-Georges T, et al. Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. Neurobiol Aging 2020 ; 90 : 135–46. [CrossRef] [PubMed] [Google Scholar]
- Mathys H, Davila-Velderrain J, Peng Z et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019 ; 570 : 332–337. [CrossRef] [PubMed] [Google Scholar]
- Al-Dalahmah O, Sosunov AA, Shaik A, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 2020 ; 8. [PubMed] [Google Scholar]
- Hasel P, Rose IVL, Sadick JS, et al. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 2021 ; 24 : 1475–87. [CrossRef] [PubMed] [Google Scholar]
- Mu Y, Bennett D v., Rubinov M, et al. Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior. Cell 2019 ; 178 : 27–43.e19. [CrossRef] [PubMed] [Google Scholar]
- Paukert M, Agarwal A, Cha J et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 2014 ; 82 : 1263–1270. [CrossRef] [PubMed] [Google Scholar]
- Ben Haim L, Escartin C. Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Curr Opin Neurobiol 2022 ; 72 : 63–71. [CrossRef] [PubMed] [Google Scholar]
- Agarwal A, Wu PH, Hughes EG et al. Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron 2017 ; 93 : 587–605.e7. [CrossRef] [PubMed] [Google Scholar]
- Cornell-Bell AH, Thomas PG, Caffrey JM. Ca2+ and filopodial responses to glutamate in cultured astrocytes and neurons. Can J Physiol Pharmacol 1992 ; 70 : 206–218. [Google Scholar]
- Perriot S, Mathias A, Perriard G et al. Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Rep 2018 ; 11 : 1199–1210. [CrossRef] [Google Scholar]
- Franklin H, Clarke BE, Patani R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog Neurobiol 2021 ; 200 : 101973. [CrossRef] [PubMed] [Google Scholar]
- Sienski G, Narayan P, Bonner JM, et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med 2021 ; 13 : eaaz4564. [CrossRef] [PubMed] [Google Scholar]
- Varcianna A, Myszczynska MA, Castelli LM et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 2019 ; 40 : 626–635. [CrossRef] [PubMed] [Google Scholar]
- di Domenico A, Carola G, Calatayud C et al. Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson’s Disease. Stem Cell Rep 2019 ; 12 : 213–229. [CrossRef] [Google Scholar]
- Kelley KW, Pasca SP. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 2022 ; 185 : 42–61. [CrossRef] [PubMed] [Google Scholar]
- Chneiweiss H. Organoïdes : nouvelles perspectives et nouvelles questions éthiques. Med Sci (Paris) 2020 ; 36 : 99–100. [PubMed] [Google Scholar]
- Haiech J. Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Med Sci (Paris) 2020 ; 36 : 919–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kastanenka K v., Moreno-Bote R, Pittà M de, et al. A roadmap to integrate astrocytes into Systems Neuroscience. Glia 2020 ; 68 : 5–26. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Sloan SA, Clarke LE et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016 ; 89 : 37–53. [CrossRef] [PubMed] [Google Scholar]
- Hansson O. Biomarkers for neurodegenerative diseases. Nat Med 2021 ; 27 : 954–63. [CrossRef] [PubMed] [Google Scholar]
- Bardehle S, Krüger M, Buggenthin F et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 2013 ; 16 : 580–586. [CrossRef] [PubMed] [Google Scholar]
- Ransohoff RM. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 2016 ; 19 : 987–991. [CrossRef] [PubMed] [Google Scholar]
- Barbar L, Jain T, Zimmer M, et al. CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron 2020 ; 107 : 436–53.e12. [CrossRef] [PubMed] [Google Scholar]
- Tong X, Ao Y, Faas GC et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 2014 ; 17 : 694–703. [CrossRef] [PubMed] [Google Scholar]
- Huffels CFM, Osborn LM, Hulshof LA, et al. Amyloid-β plaques affect astrocyte Kir4.1 protein expression but not function in the dentate gyrus of APP/PS1 mice. Glia 2022 ; 70 : 748–67. [CrossRef] [PubMed] [Google Scholar]
- Hartmann K, Sepulveda-Falla D, Rose IVL et al. Complement 3 +-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol Commun 2019 ; 7 : 83. [CrossRef] [PubMed] [Google Scholar]
- DeFelipe J.. Cajal y sus dibujos: ciencia y arte. Arte y neurologia 2005 ; 213–230. [Google Scholar]
- Ramón y Cajal S. Contribution à la connaissance de la névroglie cérébrale et cérébelleuse dans la paralysie générale progressive. Trab Lab Invest biol 1925 ; 23 : 157–216. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.