Open Access
Issue
Med Sci (Paris)
Volume 38, Number 10, Octobre 2022
Page(s) 786 - 794
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022104
Published online 11 October 2022
  1. Hemonnot-Girard AL, Ben Haim L, Escartin C, et al. De nouvelles techniques pour dévoiler le rôle des cellules gliales du cerveau. Med Sci (Paris) 2021 ; 37 : 59–67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Hirbec H, Déglon N, Foo LC, et al. Emerging technologies to study glial cells. Glia 2020 ; 68 : 1692–728. [CrossRef] [PubMed] [Google Scholar]
  3. Escartin C, Guillemaud O. Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019 ; 67 : 2221–2247. [CrossRef] [PubMed] [Google Scholar]
  4. Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021 ; 24 : 312–25. [CrossRef] [PubMed] [Google Scholar]
  5. Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018 ; 98 : 239–389. [CrossRef] [PubMed] [Google Scholar]
  6. Ghézali G, Dallérac G, Rouach N. Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 2016 ; 221 : 2427–2442. [CrossRef] [PubMed] [Google Scholar]
  7. Cohen-Salmon M, Slaoui L, Mazaré N, et al. Astrocytes in the regulation of cerebrovascular functions. Glia 2021 ; 69 : 817–41. [CrossRef] [PubMed] [Google Scholar]
  8. Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021 ; 44 : 781–92. [CrossRef] [PubMed] [Google Scholar]
  9. Mazare N, Oudart M, Cohen-Salmon M. Local translation in perisynaptic and perivascular astrocytic processes - a means to ensure astrocyte molecular and functional polarity? J Cell Sci 2021 ; 134. [Google Scholar]
  10. Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci 2018 ; 21 : 9–15. [CrossRef] [PubMed] [Google Scholar]
  11. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015 ; 32 : 121–130. [CrossRef] [PubMed] [Google Scholar]
  12. Zamanian JL, Xu L, Foo LC et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012 ; 32 : 6391–6410. [CrossRef] [PubMed] [Google Scholar]
  13. Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, et al. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015 ; 9 : 278. [CrossRef] [PubMed] [Google Scholar]
  14. Shandra O, Winemiller AR, Heithoff BP et al. Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and Spontaneous Recurrent Seizures. J Neurosci 2019 ; 39 : 1944–1963. [CrossRef] [PubMed] [Google Scholar]
  15. Khakh BS, Deneen B. The Emerging Nature of Astrocyte Diversity. Annu Rev Neurosci 2019 ; 42 : 187–207. [CrossRef] [PubMed] [Google Scholar]
  16. Wilhelmsson U, Bushong EA, Price DL et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 2006 ; 103 : 17513–17518. [CrossRef] [PubMed] [Google Scholar]
  17. Ceyzériat K, Abjean L, Carrillo-de Sauvage MA et al. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?. Neuroscience 2016 ; 330 : 205–218. [CrossRef] [PubMed] [Google Scholar]
  18. Salvador AF, Lima KA de, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 2021 ; 21 : 526–41. [CrossRef] [PubMed] [Google Scholar]
  19. Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019 ; 50 : 955–974. [CrossRef] [PubMed] [Google Scholar]
  20. Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022 2022 ; 1–20. [Google Scholar]
  21. Kuchibhotla K v., Lattarulo CR, Hyman BT, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009 ; 323 : 1211–5. [CrossRef] [PubMed] [Google Scholar]
  22. Arizono M, Idziak A, Nägerl UV. Il faut être trois pour danser le tango - Illuminer les signaux Ca2+ des synapses tripartites. Med Sci (Paris) 2021 ; 37 : 127–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020 ; 21 : 1–32. [Google Scholar]
  24. Abjean L, Ben Haim L, Riquelme-Perez M, et al. Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway. Brain 2022. https://doi.org/10.1093/brain/awac068. [PubMed] [Google Scholar]
  25. Colombo E, Cordiglieri C, Melli G et al. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J Exp Med 2012 ; 209 : 521–535. [CrossRef] [PubMed] [Google Scholar]
  26. Liddelow SA, Guttenplan KA, Clarke LE et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 ; 541 : 481–487. [CrossRef] [PubMed] [Google Scholar]
  27. Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 2017 ; 18 : 31–41. [CrossRef] [PubMed] [Google Scholar]
  28. Anderson MA, Burda JE, Ren Y et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016 ; 532 : 195–200. [CrossRef] [PubMed] [Google Scholar]
  29. Ceyzériat K, Ben Haim L, Denizot A et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 2018 ; 6 : 104. [CrossRef] [PubMed] [Google Scholar]
  30. Guillemaud O, Ceyzériat K, Saint-Georges T, et al. Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. Neurobiol Aging 2020 ; 90 : 135–46. [CrossRef] [PubMed] [Google Scholar]
  31. Mathys H, Davila-Velderrain J, Peng Z et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019 ; 570 : 332–337. [CrossRef] [PubMed] [Google Scholar]
  32. Al-Dalahmah O, Sosunov AA, Shaik A, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 2020 ; 8. [PubMed] [Google Scholar]
  33. Hasel P, Rose IVL, Sadick JS, et al. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 2021 ; 24 : 1475–87. [CrossRef] [PubMed] [Google Scholar]
  34. Mu Y, Bennett D v., Rubinov M, et al. Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior. Cell 2019 ; 178 : 27–43.e19. [CrossRef] [PubMed] [Google Scholar]
  35. Paukert M, Agarwal A, Cha J et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 2014 ; 82 : 1263–1270. [CrossRef] [PubMed] [Google Scholar]
  36. Ben Haim L, Escartin C. Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Curr Opin Neurobiol 2022 ; 72 : 63–71. [CrossRef] [PubMed] [Google Scholar]
  37. Agarwal A, Wu PH, Hughes EG et al. Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron 2017 ; 93 : 587–605.e7. [CrossRef] [PubMed] [Google Scholar]
  38. Cornell-Bell AH, Thomas PG, Caffrey JM. Ca2+ and filopodial responses to glutamate in cultured astrocytes and neurons. Can J Physiol Pharmacol 1992 ; 70 : 206–218. [Google Scholar]
  39. Perriot S, Mathias A, Perriard G et al. Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Rep 2018 ; 11 : 1199–1210. [CrossRef] [Google Scholar]
  40. Franklin H, Clarke BE, Patani R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog Neurobiol 2021 ; 200 : 101973. [CrossRef] [PubMed] [Google Scholar]
  41. Sienski G, Narayan P, Bonner JM, et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med 2021 ; 13 : eaaz4564. [CrossRef] [PubMed] [Google Scholar]
  42. Varcianna A, Myszczynska MA, Castelli LM et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 2019 ; 40 : 626–635. [CrossRef] [PubMed] [Google Scholar]
  43. di Domenico A, Carola G, Calatayud C et al. Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson’s Disease. Stem Cell Rep 2019 ; 12 : 213–229. [CrossRef] [Google Scholar]
  44. Kelley KW, Pasca SP. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 2022 ; 185 : 42–61. [CrossRef] [PubMed] [Google Scholar]
  45. Chneiweiss H. Organoïdes : nouvelles perspectives et nouvelles questions éthiques. Med Sci (Paris) 2020 ; 36 : 99–100. [PubMed] [Google Scholar]
  46. Haiech J. Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Med Sci (Paris) 2020 ; 36 : 919–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Kastanenka K v., Moreno-Bote R, Pittà M de, et al. A roadmap to integrate astrocytes into Systems Neuroscience. Glia 2020 ; 68 : 5–26. [CrossRef] [PubMed] [Google Scholar]
  48. Zhang Y, Sloan SA, Clarke LE et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016 ; 89 : 37–53. [CrossRef] [PubMed] [Google Scholar]
  49. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med 2021 ; 27 : 954–63. [CrossRef] [PubMed] [Google Scholar]
  50. Bardehle S, Krüger M, Buggenthin F et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 2013 ; 16 : 580–586. [CrossRef] [PubMed] [Google Scholar]
  51. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 2016 ; 19 : 987–991. [CrossRef] [PubMed] [Google Scholar]
  52. Barbar L, Jain T, Zimmer M, et al. CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron 2020 ; 107 : 436–53.e12. [CrossRef] [PubMed] [Google Scholar]
  53. Tong X, Ao Y, Faas GC et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 2014 ; 17 : 694–703. [CrossRef] [PubMed] [Google Scholar]
  54. Huffels CFM, Osborn LM, Hulshof LA, et al. Amyloid-β plaques affect astrocyte Kir4.1 protein expression but not function in the dentate gyrus of APP/PS1 mice. Glia 2022 ; 70 : 748–67. [CrossRef] [PubMed] [Google Scholar]
  55. Hartmann K, Sepulveda-Falla D, Rose IVL et al. Complement 3 +-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol Commun 2019 ; 7 : 83. [CrossRef] [PubMed] [Google Scholar]
  56. DeFelipe J.. Cajal y sus dibujos: ciencia y arte. Arte y neurologia 2005 ; 213–230. [Google Scholar]
  57. Ramón y Cajal S. Contribution à la connaissance de la névroglie cérébrale et cérébelleuse dans la paralysie générale progressive. Trab Lab Invest biol 1925 ; 23 : 157–216. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.