Open Access
Med Sci (Paris)
Volume 38, Number 8-9, Août-Septembre 2022
Page(s) 655 - 662
Section M/S Revues
Published online 12 September 2022
  1. Albright F, Burnett CH, Smith P, Parson W. Pseudohypoparathyroidism, An example of “Seabright Bantam Syndrome”. Report of Three Cases. Endocrinology 1942 ; 30 : 922–932. [Google Scholar]
  2. Ellsworth R, Howard JE. Studies on the physiology of the parathyroid glands. Some re- sponses of normal human kidneys and blood to intravenous parathyroid extract. Bull Johns Hopkins Hosp 1934 ; 55 : 296. [Google Scholar]
  3. Lowe CU, Ellinger AJ, Wright W, Stauffer H. Pseudohypoparathyroidism; the Seabright bantam syndrome. J Pediatr 1950 ; 36 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  4. Albright F, Forbes AP, Henneman PH. Pseudo-pseudohypoparathyroidism. Trans Assoc Am Physicians 1952 ; 65 : 337–350. [PubMed] [Google Scholar]
  5. Chase LR, Melson GL, Aurbach GD. Pseudohypoparathyroidism: defective excretion of 3’,5’-AMP in response to parathyroid hormone. J Clin Invest 1969 ; 48 : 1832–1844. [CrossRef] [PubMed] [Google Scholar]
  6. Farfel Z, Brickman AS, Kaslow HRet al. Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism. N Engl J Med 1980 ; 303 : 237–242. [CrossRef] [PubMed] [Google Scholar]
  7. Levine MA, Downs RW, Singer Met al. Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochem Biophys Res Commun 1980 ; 94 : 1319–1324. [CrossRef] [PubMed] [Google Scholar]
  8. Marguet C, Mallet E, Basuyau JPet al. Clinical and biological heterogeneity in pseudohypoparathyroidism syndrome. Results of a multicenter study. Horm Res 1997 ; 48 : 120–130. [CrossRef] [PubMed] [Google Scholar]
  9. Hamm HE. The many faces of G protein signaling. J Biol Chem 1998 ; 273 : 669–672. [CrossRef] [PubMed] [Google Scholar]
  10. Snanoudj S, Molin A, Colson, et al. Maternal Transmission Ratio Distortion of GNAS Loss-of-Function Mutations. J Bone Miner Res 2020; 35 : 913–9. [CrossRef] [PubMed] [Google Scholar]
  11. Linglart A, Menguy C, Couvineau Aet al. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med 2011 ; 364 : 2218–2226. [CrossRef] [PubMed] [Google Scholar]
  12. Drezner M, Neelon FA, Lebovitz HE. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973 ; 289 : 1056–1060. [CrossRef] [PubMed] [Google Scholar]
  13. Shore EM, Ahn J, Jan de Beur Set al. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med 2002 ; 346 : 99–106. [CrossRef] [PubMed] [Google Scholar]
  14. Mantovani G, Bastepe M, Monk Det al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018 ; 14 : 476–500. [CrossRef] [PubMed] [Google Scholar]
  15. Thiele S, Mantovani G, Barlier Aet al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol 2016 ; 175 : 1–17. [Google Scholar]
  16. Lambright DG, Noel JP, Hamm HE, Sigler PB. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature 1994 ; 369 : 621–628. [CrossRef] [PubMed] [Google Scholar]
  17. Weinstein LS, Liu J, Sakamoto Aet al. Minireview: GNAS: normal and abnormal functions. Endocrinology 2004 ; 145 : 5459–5464. [CrossRef] [PubMed] [Google Scholar]
  18. Mendes de Oliveira E, Keogh JM, et al. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med 2021; 385 : 1581–92. [CrossRef] [PubMed] [Google Scholar]
  19. Thiele S, de Sanctis L, Werner Ret al. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gs-alpha-receptor interaction. Hum Mutat 2011 ; 32 : 653–660. [CrossRef] [PubMed] [Google Scholar]
  20. Davies SJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet 1993 ; 30 : 101–103. [CrossRef] [PubMed] [Google Scholar]
  21. Hayward BE, Moran V, Strain L, Bonthron DT. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci U S A 1998 ; 95 : 15475–15480. [CrossRef] [PubMed] [Google Scholar]
  22. Bastepe M, Gunes Y, Perez-Villamil Bet al. Receptor-mediated adenylyl cyclase activation through XLalphas, the extra-large variant of the stimulatory G Protein alpha-Subunit. Mol Endocrinol 2002 ; 16 : 1912–1919. [CrossRef] [PubMed] [Google Scholar]
  23. Williamson CM, Ball ST, Nottingham WTet al. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet 2004 ; 36 : 894–899. [CrossRef] [PubMed] [Google Scholar]
  24. Weinstein LS, Yu S, Ecelbarger CA. Variable imprinting of the heterotrimeric G protein G(s) alpha-subunit within different segments of the nephron. Am J Physiol Renal Physiol 2000 ; 278 : F507–F514. [CrossRef] [PubMed] [Google Scholar]
  25. Turan S, Fernandez-Rebollo E, Aydin Cet al. Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone resistance owing to heterozygous Gαs disruption. J Bone Miner Res 2014 ; 29 : 749–760. [CrossRef] [PubMed] [Google Scholar]
  26. Cong Q, Xu R, Yang Y. Gαssignaling in skeletal development, homeostasis and diseases Curr Top Dev Bio 2019; 133 : 281–307. [CrossRef] [Google Scholar]
  27. Lebrun M, Richard N, Abeguilé Get al. Progressive osseous heteroplasia: a model for the imprinting effects of GNAS inactivating mutations in humans. J Clin Endocrinol Metab 2010 ; 95 : 3028–3038. [CrossRef] [PubMed] [Google Scholar]
  28. Happle R.. Progressive osseous heteroplasia is not a Mendelian trait but a type 2 segmental manifestation of GNAS inactivation disorders: A hypothesis. Eur J Med Genet 2016 ; 59 : 290–294. [CrossRef] [PubMed] [Google Scholar]
  29. Regard JB, Malhotra D, Gvozdenovic-Jeremic Jet al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med 2013 ; 19 : 1505–1512. [CrossRef] [PubMed] [Google Scholar]
  30. Richard N, Molin A, Coudray Net al. Paternal GNAS mutations lead to severe intrauterine growth retardation (IUGR) and provide evidence for a role of XLαs in fetal development. J Clin Endocrinol Metab 2013 ; 98 : 1549–1556. [Google Scholar]
  31. Liu J, Litman D, Rosenberg MJet al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000 ; 106 : 1167–1174. [CrossRef] [PubMed] [Google Scholar]
  32. Bastepe M, Fröhlich LF, Hendy GNet al. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 2003 ; 112 : 1255–1263. [CrossRef] [PubMed] [Google Scholar]
  33. Rezwan FI, Poole RL, Prescott Tet al. Very small deletions within the NESP55 gene in pseudohypoparathyroidism type 1b. Eur J Hum Genet 2015 ; 23 : 494–499. [CrossRef] [PubMed] [Google Scholar]
  34. Mehta S, Williamson CM, Ball Set al. Transcription driven somatic DNA methylation within the imprinted Gnas cluster. PLoS One 2015 ; 10 : e0117378. [CrossRef] [PubMed] [Google Scholar]
  35. Zeng Y, Chen T. DNA Methylation reprogramming during mammalian development. Genes 2019 ; 10 : 257. [CrossRef] [Google Scholar]
  36. Colson C, Decamp M, Gruchy Net al. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019 ; 123 : 145–152. [CrossRef] [PubMed] [Google Scholar]
  37. Maupetit-Méhouas S, Azzi S, Steunou Vet al. Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism type 1b. Hum Mutat 2013 ; 34 : 1172–1180. [CrossRef] [PubMed] [Google Scholar]
  38. Monteagudo-Sánchez A, Hernandez Mora JR, Simon C, et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res 2020; 48 : 11394–407. [CrossRef] [PubMed] [Google Scholar]
  39. Milioto A, Reyes M, Hanna P, et al. Lack of GNAS re-methylation during oogenesis may be a cause of sporadic pseudohypoparathyroidism type Ib (PHP1B). J Clin Endocrinol Metab 2022; 107 : e1610–9. [CrossRef] [PubMed] [Google Scholar]
  40. Keidai Y, Iwasaki Y, Iwasaki K, et al. Sporadic Pseudohypoparathyroidism Type 1B in Monozygotic Twins: Insights Into the Pathogenesis of Methylation Defects. J Clin Endocrinol Metab 2022; 107 : e947–54. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.