Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 8-9, Août-Septembre 2022
Page(s) 655 - 662
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022103
Publié en ligne 12 septembre 2022
  1. Albright F, Burnett CH, Smith P, Parson W. Pseudohypoparathyroidism, An example of “Seabright Bantam Syndrome”. Report of Three Cases. Endocrinology 1942 ; 30 : 922–932. [Google Scholar]
  2. Ellsworth R, Howard JE. Studies on the physiology of the parathyroid glands. Some re- sponses of normal human kidneys and blood to intravenous parathyroid extract. Bull Johns Hopkins Hosp 1934 ; 55 : 296. [Google Scholar]
  3. Lowe CU, Ellinger AJ, Wright W, Stauffer H. Pseudohypoparathyroidism; the Seabright bantam syndrome. J Pediatr 1950 ; 36 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  4. Albright F, Forbes AP, Henneman PH. Pseudo-pseudohypoparathyroidism. Trans Assoc Am Physicians 1952 ; 65 : 337–350. [PubMed] [Google Scholar]
  5. Chase LR, Melson GL, Aurbach GD. Pseudohypoparathyroidism: defective excretion of 3’,5’-AMP in response to parathyroid hormone. J Clin Invest 1969 ; 48 : 1832–1844. [CrossRef] [PubMed] [Google Scholar]
  6. Farfel Z, Brickman AS, Kaslow HRet al. Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism. N Engl J Med 1980 ; 303 : 237–242. [CrossRef] [PubMed] [Google Scholar]
  7. Levine MA, Downs RW, Singer Met al. Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochem Biophys Res Commun 1980 ; 94 : 1319–1324. [CrossRef] [PubMed] [Google Scholar]
  8. Marguet C, Mallet E, Basuyau JPet al. Clinical and biological heterogeneity in pseudohypoparathyroidism syndrome. Results of a multicenter study. Horm Res 1997 ; 48 : 120–130. [CrossRef] [PubMed] [Google Scholar]
  9. Hamm HE. The many faces of G protein signaling. J Biol Chem 1998 ; 273 : 669–672. [CrossRef] [PubMed] [Google Scholar]
  10. Snanoudj S, Molin A, Colson, et al. Maternal Transmission Ratio Distortion of GNAS Loss-of-Function Mutations. J Bone Miner Res 2020; 35 : 913–9. [CrossRef] [PubMed] [Google Scholar]
  11. Linglart A, Menguy C, Couvineau Aet al. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med 2011 ; 364 : 2218–2226. [CrossRef] [PubMed] [Google Scholar]
  12. Drezner M, Neelon FA, Lebovitz HE. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973 ; 289 : 1056–1060. [CrossRef] [PubMed] [Google Scholar]
  13. Shore EM, Ahn J, Jan de Beur Set al. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med 2002 ; 346 : 99–106. [CrossRef] [PubMed] [Google Scholar]
  14. Mantovani G, Bastepe M, Monk Det al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018 ; 14 : 476–500. [CrossRef] [PubMed] [Google Scholar]
  15. Thiele S, Mantovani G, Barlier Aet al. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol 2016 ; 175 : 1–17. [Google Scholar]
  16. Lambright DG, Noel JP, Hamm HE, Sigler PB. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature 1994 ; 369 : 621–628. [CrossRef] [PubMed] [Google Scholar]
  17. Weinstein LS, Liu J, Sakamoto Aet al. Minireview: GNAS: normal and abnormal functions. Endocrinology 2004 ; 145 : 5459–5464. [CrossRef] [PubMed] [Google Scholar]
  18. Mendes de Oliveira E, Keogh JM, et al. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med 2021; 385 : 1581–92. [CrossRef] [PubMed] [Google Scholar]
  19. Thiele S, de Sanctis L, Werner Ret al. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gs-alpha-receptor interaction. Hum Mutat 2011 ; 32 : 653–660. [CrossRef] [PubMed] [Google Scholar]
  20. Davies SJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet 1993 ; 30 : 101–103. [CrossRef] [PubMed] [Google Scholar]
  21. Hayward BE, Moran V, Strain L, Bonthron DT. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci U S A 1998 ; 95 : 15475–15480. [CrossRef] [PubMed] [Google Scholar]
  22. Bastepe M, Gunes Y, Perez-Villamil Bet al. Receptor-mediated adenylyl cyclase activation through XLalphas, the extra-large variant of the stimulatory G Protein alpha-Subunit. Mol Endocrinol 2002 ; 16 : 1912–1919. [CrossRef] [PubMed] [Google Scholar]
  23. Williamson CM, Ball ST, Nottingham WTet al. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet 2004 ; 36 : 894–899. [CrossRef] [PubMed] [Google Scholar]
  24. Weinstein LS, Yu S, Ecelbarger CA. Variable imprinting of the heterotrimeric G protein G(s) alpha-subunit within different segments of the nephron. Am J Physiol Renal Physiol 2000 ; 278 : F507–F514. [CrossRef] [PubMed] [Google Scholar]
  25. Turan S, Fernandez-Rebollo E, Aydin Cet al. Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone resistance owing to heterozygous Gαs disruption. J Bone Miner Res 2014 ; 29 : 749–760. [CrossRef] [PubMed] [Google Scholar]
  26. Cong Q, Xu R, Yang Y. Gαssignaling in skeletal development, homeostasis and diseases Curr Top Dev Bio 2019; 133 : 281–307. [CrossRef] [Google Scholar]
  27. Lebrun M, Richard N, Abeguilé Get al. Progressive osseous heteroplasia: a model for the imprinting effects of GNAS inactivating mutations in humans. J Clin Endocrinol Metab 2010 ; 95 : 3028–3038. [CrossRef] [PubMed] [Google Scholar]
  28. Happle R.. Progressive osseous heteroplasia is not a Mendelian trait but a type 2 segmental manifestation of GNAS inactivation disorders: A hypothesis. Eur J Med Genet 2016 ; 59 : 290–294. [CrossRef] [PubMed] [Google Scholar]
  29. Regard JB, Malhotra D, Gvozdenovic-Jeremic Jet al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med 2013 ; 19 : 1505–1512. [CrossRef] [PubMed] [Google Scholar]
  30. Richard N, Molin A, Coudray Net al. Paternal GNAS mutations lead to severe intrauterine growth retardation (IUGR) and provide evidence for a role of XLαs in fetal development. J Clin Endocrinol Metab 2013 ; 98 : 1549–1556. [Google Scholar]
  31. Liu J, Litman D, Rosenberg MJet al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000 ; 106 : 1167–1174. [CrossRef] [PubMed] [Google Scholar]
  32. Bastepe M, Fröhlich LF, Hendy GNet al. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 2003 ; 112 : 1255–1263. [CrossRef] [PubMed] [Google Scholar]
  33. Rezwan FI, Poole RL, Prescott Tet al. Very small deletions within the NESP55 gene in pseudohypoparathyroidism type 1b. Eur J Hum Genet 2015 ; 23 : 494–499. [CrossRef] [PubMed] [Google Scholar]
  34. Mehta S, Williamson CM, Ball Set al. Transcription driven somatic DNA methylation within the imprinted Gnas cluster. PLoS One 2015 ; 10 : e0117378. [CrossRef] [PubMed] [Google Scholar]
  35. Zeng Y, Chen T. DNA Methylation reprogramming during mammalian development. Genes 2019 ; 10 : 257. [CrossRef] [Google Scholar]
  36. Colson C, Decamp M, Gruchy Net al. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019 ; 123 : 145–152. [CrossRef] [PubMed] [Google Scholar]
  37. Maupetit-Méhouas S, Azzi S, Steunou Vet al. Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism type 1b. Hum Mutat 2013 ; 34 : 1172–1180. [CrossRef] [PubMed] [Google Scholar]
  38. Monteagudo-Sánchez A, Hernandez Mora JR, Simon C, et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res 2020; 48 : 11394–407. [CrossRef] [PubMed] [Google Scholar]
  39. Milioto A, Reyes M, Hanna P, et al. Lack of GNAS re-methylation during oogenesis may be a cause of sporadic pseudohypoparathyroidism type Ib (PHP1B). J Clin Endocrinol Metab 2022; 107 : e1610–9. [CrossRef] [PubMed] [Google Scholar]
  40. Keidai Y, Iwasaki Y, Iwasaki K, et al. Sporadic Pseudohypoparathyroidism Type 1B in Monozygotic Twins: Insights Into the Pathogenesis of Methylation Defects. J Clin Endocrinol Metab 2022; 107 : e947–54. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.