Open Access
Issue
Med Sci (Paris)
Volume 38, Number 8-9, Août-Septembre 2022
Page(s) 679 - 685
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022108
Published online 12 September 2022
  1. World Health Organisation. Spinal cord injury. Geneva: WHO, 2013. [Google Scholar]
  2. McClintock SM, Reti IM, Carpenter LL, et al. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry 2018 ; 79. [Google Scholar]
  3. Kozel FA. Clinical repetitive transcranial magnetic stimulation for posttraumatic stress disorder, generalized anxiety disorder, and bipolar disorder. Psychiatr Clin North Am 2018 ; 41 : 433–446. [CrossRef] [PubMed] [Google Scholar]
  4. Choi E, Gattas S, Brown N, et al. Epidural electrical stimulation for spinal cord injury. Neural Regen Res 2021; 16 : 2367–75. [CrossRef] [PubMed] [Google Scholar]
  5. Vlachos A, Muller-Dahlhaus F, Rosskopp J, et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012 ; 32 : 17514–17523. [CrossRef] [PubMed] [Google Scholar]
  6. Tang A, Thickbroom G, Rodger J. Repetitive transcranial magnetic stimulation of the brain: Mechanisms from animal and experimental Models. Neuroscientist 2017 ; 23 : 82–94. [CrossRef] [PubMed] [Google Scholar]
  7. Lenz M, Platschek S, Priesemann V, et al. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2015 ; 220 : 3323–3337. [CrossRef] [PubMed] [Google Scholar]
  8. Lenz M, Vlachos A. Releasing the cortical brake by non-invasive electromagnetic stimulation? rTMS Induces LTD of GABAergic neurotransmission. Front Neural Circuits 2016 ; 10 : 96. [CrossRef] [PubMed] [Google Scholar]
  9. Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol 2019 ; 160 : 559–580. [CrossRef] [PubMed] [Google Scholar]
  10. Huang Y-Z, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron 2005 ; 45 : 201–206. [CrossRef] [PubMed] [Google Scholar]
  11. Lenz M, Galanis C, Muller-Dahlhaus F, et al. Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun 2016 ; 7 : 10020. [CrossRef] [PubMed] [Google Scholar]
  12. Benali A, Trippe J, Weiler E, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 2011 ; 31 : 1193–1203. [CrossRef] [PubMed] [Google Scholar]
  13. Labedi A, Benali A, Mix A, et al. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent. Brain Stimul 2014 ; 7 : 394–400. [CrossRef] [PubMed] [Google Scholar]
  14. Jazmati D, Neubacher U, Funke K. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation. Brain Stimul 2018 ; 11 : 797–805. [CrossRef] [PubMed] [Google Scholar]
  15. Trippe J, Mix A, Aydin-Abidin S, et al. theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 2009 ; 199 : 411–421. [CrossRef] [PubMed] [Google Scholar]
  16. Ueyama E, Ukai S, Ogawa A, et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 2011 ; 65 : 77–81. [CrossRef] [PubMed] [Google Scholar]
  17. Aydin-Abidin S, Trippe J, Funke K, et al. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 2008 ; 188 : 249–261. [CrossRef] [PubMed] [Google Scholar]
  18. Fujiki M, Steward O. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 1997 ; 44 : 301–308. [CrossRef] [PubMed] [Google Scholar]
  19. Zorzo C, Higarza SG, Méndez M, et al. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull 2019 ; 150 : 13–20. [CrossRef] [PubMed] [Google Scholar]
  20. Liebetanz D, Fauser S, Michaelis T, et al. Safety aspects of chronic low-frequency transcranial magnetic stimulation based on localized proton magnetic resonance spectroscopy and histology of the rat brain. J Psychiatr Res 2003 ; 37 : 277–286. [CrossRef] [PubMed] [Google Scholar]
  21. Prasad A, Teh DBL, Blasiak A, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 2017 ; 7 : 6743. [CrossRef] [PubMed] [Google Scholar]
  22. Dolgova N, Wei Z, Spink B, et al. Low-field magnetic stimulation accelerates the differentiation of oligodendrocyte precursor cells via non-canonical TGF-β sgnaling pathways. Mol Neurobiol 2021; 58 : 855–66. [CrossRef] [PubMed] [Google Scholar]
  23. Cullen CL, Young KM. How does transcranial magnetic stimulation influence glial cells in the central nervous system?. Front Neural Circuits 2016 ; 10 : 26. [CrossRef] [PubMed] [Google Scholar]
  24. Michel-Flutot P, Zholudeva LV, Randelman ML, et al. High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks. Resp Physiol Neurobiol 2021 : 103704. [CrossRef] [Google Scholar]
  25. Vinit S, Keomani E, Deramaudt TB, et al. Interdisciplinary approaches of transcranial magnetic stimulation applied to a respiratory neuronal circuitry model. PloS one 2014 ; 9 : e113251. [CrossRef] [PubMed] [Google Scholar]
  26. Vinit S, Keomani E, Deramaudt TB, et al. Reorganization of respiratory descending pathways following cervical spinal partial section investigated by transcranial magnetic stimulation in the rat. PloS one 2016 ; 11 : e0148180. [CrossRef] [PubMed] [Google Scholar]
  27. Vinit S, Petitjean M. Novel role for transcranial magnetic stimulation to study post-traumatic respiratory neuroplasticity. Neural Regen Res 2016 ; 11 : 1073–1074. [CrossRef] [PubMed] [Google Scholar]
  28. Belci M, Catley M, Husain M, et al. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients. Spinal Cord 2004 ; 42 : 417–419. [CrossRef] [PubMed] [Google Scholar]
  29. Yılmaz B, Kesikburun S. Yas¸ar E, Tan AK. The effect of repetitive transcranial magnetic stimulation on refractory neuropathic pain in spinal cord injury. J Spinal Cord Med 2014 ; 37 : 397–400. [CrossRef] [PubMed] [Google Scholar]
  30. Wincek A, Huber J, Leszczyn΄ska K, et al. The long-term effect of treatment using the transcranial magnetic stimulation rTMS in patients after incomplete cervical or thoracic spinal cord injury. J Clin Med 2021; 10. [PubMed] [Google Scholar]
  31. Turi Z, Lenz M, Paulus W, et al. Selecting stimulation intensity in repetitive transcranial magnetic stimulation studies: A systematic review between 1991 and 2020. Europ J Neurosci 2021; 53 : 3404–15. [CrossRef] [PubMed] [Google Scholar]
  32. Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil 2015 ; 96 : S145–S155. [CrossRef] [PubMed] [Google Scholar]
  33. Lee KZ, Liou LM, Vinit S. Diaphragm motor-evoked potential induced by cervical magnetic stimulation following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 38 : 2122–40. [CrossRef] [PubMed] [Google Scholar]
  34. Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential after cervical spinal cord contusion in the rat. J Neurotrauma 2022; 39 : 683–700. [CrossRef] [PubMed] [Google Scholar]
  35. Michel-Flutot P, Jesus I, Vanhee V, et al. Effects of chronic high-frequency rTMS protocol on respiratory neuroplasticity following C2 spinal cord hemisection in rats. Biology 2022; 11 : 473. [CrossRef] [PubMed] [Google Scholar]
  36. Gao W, Yu LG, Liu YL, et al. Effects of high frequency repetitive transcranial magnetic stimulation on KCC2 expression in rats with spasticity following spinal cord injury. J Huazhong Univ Sci Technolog Med Sci 2017 ; 37 : 777–781. [PubMed] [Google Scholar]
  37. Kim JY, Choi GS, Cho YW, et al. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci 2013 ; 28 : 295–299. [CrossRef] [PubMed] [Google Scholar]
  38. Delarue Q, Chalfouh C, Guérout N. Spinal cord injury: can we repair spinal cord non-invasively by using magnetic stimulation? Neural Regen Res 2021; 16 : 2429–30. [CrossRef] [PubMed] [Google Scholar]
  39. Krishnan VS, Shin SS, Belegu V, et al. Multimodal evaluation of TMS-induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front Neurosci 2019 ; 13 : 387. [CrossRef] [PubMed] [Google Scholar]
  40. Marufa SA, Hsieh TH, Liou JC, et al. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. PloS one 2021; 16 : e0252965. [CrossRef] [PubMed] [Google Scholar]
  41. Nakanishi T, Fujita Y, Tanaka T, Yamashita T. Anti-repulsive guidance molecule-a antibody treatment and repetitive transcranial magnetic stimulation have synergistic effects on motor recovery after spinal cord injury. Neurosci Lett 2019 ; 709 : 134329. [CrossRef] [PubMed] [Google Scholar]
  42. Guo M, Wu L, Song Z, Yang B. Enhancement of neural stem cell proliferation in rats with spinal cord injury by a combination of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). Med Sci Monit 2020; 26 : e924445. [PubMed] [Google Scholar]
  43. Wang P, Yin R, Wang S, et al. Effects of repetitive transcranial magnetic stimulation (rTMS) and treadmill training on recovery of motor function in a rat model of partial spinal cord injury. Med Sci Monit 2021; 27 : e931601. [PubMed] [Google Scholar]
  44. Leydeker M, Delva S, Tserlyuk I, et al. The effects of 15 Hz trans-spinal magnetic stimulation on locomotor control in mice with chronic contusive spinal cord injury. Electromagn Biol Med 2013 ; 32 : 155–164. [CrossRef] [PubMed] [Google Scholar]
  45. Chalfouh C, Guillou C, Hardouin J, et al. The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury: Mechanisms and pathways underlying the effect. Neurotherapeutics 2020; 17 : 2069–88. [CrossRef] [PubMed] [Google Scholar]
  46. Robac A, Neveu P, Hugede A, et al. Repetitive trans-spinal magnetic stimulation improves functional recovery and tissue repair in contusive and penetrating spinal c ord injury models in rats. Biomedicines 2021; 9. [PubMed] [Google Scholar]
  47. Petrosyan HA, Alessi V, Hunanyan AS, et al. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 2015 ; 114 : 2923–2940. [CrossRef] [PubMed] [Google Scholar]
  48. Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019 ; 10 : 3879. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.