Open Access
Numéro |
Med Sci (Paris)
Volume 38, Numéro 8-9, Août-Septembre 2022
|
|
---|---|---|
Page(s) | 679 - 685 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022108 | |
Publié en ligne | 12 septembre 2022 |
- World Health Organisation. Spinal cord injury. Geneva: WHO, 2013. [Google Scholar]
- McClintock SM, Reti IM, Carpenter LL, et al. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry 2018 ; 79. [Google Scholar]
- Kozel FA. Clinical repetitive transcranial magnetic stimulation for posttraumatic stress disorder, generalized anxiety disorder, and bipolar disorder. Psychiatr Clin North Am 2018 ; 41 : 433–446. [CrossRef] [PubMed] [Google Scholar]
- Choi E, Gattas S, Brown N, et al. Epidural electrical stimulation for spinal cord injury. Neural Regen Res 2021; 16 : 2367–75. [CrossRef] [PubMed] [Google Scholar]
- Vlachos A, Muller-Dahlhaus F, Rosskopp J, et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012 ; 32 : 17514–17523. [CrossRef] [PubMed] [Google Scholar]
- Tang A, Thickbroom G, Rodger J. Repetitive transcranial magnetic stimulation of the brain: Mechanisms from animal and experimental Models. Neuroscientist 2017 ; 23 : 82–94. [CrossRef] [PubMed] [Google Scholar]
- Lenz M, Platschek S, Priesemann V, et al. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2015 ; 220 : 3323–3337. [CrossRef] [PubMed] [Google Scholar]
- Lenz M, Vlachos A. Releasing the cortical brake by non-invasive electromagnetic stimulation? rTMS Induces LTD of GABAergic neurotransmission. Front Neural Circuits 2016 ; 10 : 96. [CrossRef] [PubMed] [Google Scholar]
- Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol 2019 ; 160 : 559–580. [CrossRef] [PubMed] [Google Scholar]
- Huang Y-Z, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron 2005 ; 45 : 201–206. [CrossRef] [PubMed] [Google Scholar]
- Lenz M, Galanis C, Muller-Dahlhaus F, et al. Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun 2016 ; 7 : 10020. [CrossRef] [PubMed] [Google Scholar]
- Benali A, Trippe J, Weiler E, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 2011 ; 31 : 1193–1203. [CrossRef] [PubMed] [Google Scholar]
- Labedi A, Benali A, Mix A, et al. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent. Brain Stimul 2014 ; 7 : 394–400. [CrossRef] [PubMed] [Google Scholar]
- Jazmati D, Neubacher U, Funke K. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation. Brain Stimul 2018 ; 11 : 797–805. [CrossRef] [PubMed] [Google Scholar]
- Trippe J, Mix A, Aydin-Abidin S, et al. theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 2009 ; 199 : 411–421. [CrossRef] [PubMed] [Google Scholar]
- Ueyama E, Ukai S, Ogawa A, et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 2011 ; 65 : 77–81. [CrossRef] [PubMed] [Google Scholar]
- Aydin-Abidin S, Trippe J, Funke K, et al. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 2008 ; 188 : 249–261. [CrossRef] [PubMed] [Google Scholar]
- Fujiki M, Steward O. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 1997 ; 44 : 301–308. [CrossRef] [PubMed] [Google Scholar]
- Zorzo C, Higarza SG, Méndez M, et al. High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull 2019 ; 150 : 13–20. [CrossRef] [PubMed] [Google Scholar]
- Liebetanz D, Fauser S, Michaelis T, et al. Safety aspects of chronic low-frequency transcranial magnetic stimulation based on localized proton magnetic resonance spectroscopy and histology of the rat brain. J Psychiatr Res 2003 ; 37 : 277–286. [CrossRef] [PubMed] [Google Scholar]
- Prasad A, Teh DBL, Blasiak A, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 2017 ; 7 : 6743. [CrossRef] [PubMed] [Google Scholar]
- Dolgova N, Wei Z, Spink B, et al. Low-field magnetic stimulation accelerates the differentiation of oligodendrocyte precursor cells via non-canonical TGF-β sgnaling pathways. Mol Neurobiol 2021; 58 : 855–66. [CrossRef] [PubMed] [Google Scholar]
- Cullen CL, Young KM. How does transcranial magnetic stimulation influence glial cells in the central nervous system?. Front Neural Circuits 2016 ; 10 : 26. [CrossRef] [PubMed] [Google Scholar]
- Michel-Flutot P, Zholudeva LV, Randelman ML, et al. High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks. Resp Physiol Neurobiol 2021 : 103704. [CrossRef] [Google Scholar]
- Vinit S, Keomani E, Deramaudt TB, et al. Interdisciplinary approaches of transcranial magnetic stimulation applied to a respiratory neuronal circuitry model. PloS one 2014 ; 9 : e113251. [CrossRef] [PubMed] [Google Scholar]
- Vinit S, Keomani E, Deramaudt TB, et al. Reorganization of respiratory descending pathways following cervical spinal partial section investigated by transcranial magnetic stimulation in the rat. PloS one 2016 ; 11 : e0148180. [CrossRef] [PubMed] [Google Scholar]
- Vinit S, Petitjean M. Novel role for transcranial magnetic stimulation to study post-traumatic respiratory neuroplasticity. Neural Regen Res 2016 ; 11 : 1073–1074. [CrossRef] [PubMed] [Google Scholar]
- Belci M, Catley M, Husain M, et al. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients. Spinal Cord 2004 ; 42 : 417–419. [CrossRef] [PubMed] [Google Scholar]
- Yılmaz B, Kesikburun S. Yas¸ar E, Tan AK. The effect of repetitive transcranial magnetic stimulation on refractory neuropathic pain in spinal cord injury. J Spinal Cord Med 2014 ; 37 : 397–400. [CrossRef] [PubMed] [Google Scholar]
- Wincek A, Huber J, Leszczyn΄ska K, et al. The long-term effect of treatment using the transcranial magnetic stimulation rTMS in patients after incomplete cervical or thoracic spinal cord injury. J Clin Med 2021; 10. [PubMed] [Google Scholar]
- Turi Z, Lenz M, Paulus W, et al. Selecting stimulation intensity in repetitive transcranial magnetic stimulation studies: A systematic review between 1991 and 2020. Europ J Neurosci 2021; 53 : 3404–15. [CrossRef] [PubMed] [Google Scholar]
- Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil 2015 ; 96 : S145–S155. [CrossRef] [PubMed] [Google Scholar]
- Lee KZ, Liou LM, Vinit S. Diaphragm motor-evoked potential induced by cervical magnetic stimulation following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 38 : 2122–40. [CrossRef] [PubMed] [Google Scholar]
- Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential after cervical spinal cord contusion in the rat. J Neurotrauma 2022; 39 : 683–700. [CrossRef] [PubMed] [Google Scholar]
- Michel-Flutot P, Jesus I, Vanhee V, et al. Effects of chronic high-frequency rTMS protocol on respiratory neuroplasticity following C2 spinal cord hemisection in rats. Biology 2022; 11 : 473. [CrossRef] [PubMed] [Google Scholar]
- Gao W, Yu LG, Liu YL, et al. Effects of high frequency repetitive transcranial magnetic stimulation on KCC2 expression in rats with spasticity following spinal cord injury. J Huazhong Univ Sci Technolog Med Sci 2017 ; 37 : 777–781. [PubMed] [Google Scholar]
- Kim JY, Choi GS, Cho YW, et al. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci 2013 ; 28 : 295–299. [CrossRef] [PubMed] [Google Scholar]
- Delarue Q, Chalfouh C, Guérout N. Spinal cord injury: can we repair spinal cord non-invasively by using magnetic stimulation? Neural Regen Res 2021; 16 : 2429–30. [CrossRef] [PubMed] [Google Scholar]
- Krishnan VS, Shin SS, Belegu V, et al. Multimodal evaluation of TMS-induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front Neurosci 2019 ; 13 : 387. [CrossRef] [PubMed] [Google Scholar]
- Marufa SA, Hsieh TH, Liou JC, et al. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. PloS one 2021; 16 : e0252965. [CrossRef] [PubMed] [Google Scholar]
- Nakanishi T, Fujita Y, Tanaka T, Yamashita T. Anti-repulsive guidance molecule-a antibody treatment and repetitive transcranial magnetic stimulation have synergistic effects on motor recovery after spinal cord injury. Neurosci Lett 2019 ; 709 : 134329. [CrossRef] [PubMed] [Google Scholar]
- Guo M, Wu L, Song Z, Yang B. Enhancement of neural stem cell proliferation in rats with spinal cord injury by a combination of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). Med Sci Monit 2020; 26 : e924445. [PubMed] [Google Scholar]
- Wang P, Yin R, Wang S, et al. Effects of repetitive transcranial magnetic stimulation (rTMS) and treadmill training on recovery of motor function in a rat model of partial spinal cord injury. Med Sci Monit 2021; 27 : e931601. [PubMed] [Google Scholar]
- Leydeker M, Delva S, Tserlyuk I, et al. The effects of 15 Hz trans-spinal magnetic stimulation on locomotor control in mice with chronic contusive spinal cord injury. Electromagn Biol Med 2013 ; 32 : 155–164. [CrossRef] [PubMed] [Google Scholar]
- Chalfouh C, Guillou C, Hardouin J, et al. The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury: Mechanisms and pathways underlying the effect. Neurotherapeutics 2020; 17 : 2069–88. [CrossRef] [PubMed] [Google Scholar]
- Robac A, Neveu P, Hugede A, et al. Repetitive trans-spinal magnetic stimulation improves functional recovery and tissue repair in contusive and penetrating spinal c ord injury models in rats. Biomedicines 2021; 9. [PubMed] [Google Scholar]
- Petrosyan HA, Alessi V, Hunanyan AS, et al. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury. J Neurophysiol 2015 ; 114 : 2923–2940. [CrossRef] [PubMed] [Google Scholar]
- Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019 ; 10 : 3879. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.