Open Access
Med Sci (Paris)
Volume 38, Number 8-9, Août-Septembre 2022
Page(s) 669 - 678
Section M/S Revues
Published online 12 September 2022
  1. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science 2016 ; 354 : 994–999. [CrossRef] [PubMed] [Google Scholar]
  2. Duez H, Sebti Y, Staels B. Horloges circadiennes et métabolisme : intégration des signaux métaboliques et environnementaux. Med Sci (Paris) 2013 ; 29 : 772–777. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017 ; 18 : 164–179. [CrossRef] [PubMed] [Google Scholar]
  4. Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 2014 ; 111 : 16219–16224. [CrossRef] [PubMed] [Google Scholar]
  5. Pourcet B, Duez H. Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22 : 9721. [CrossRef] [PubMed] [Google Scholar]
  6. Torra IP, Tsibulsky V, Delaunay F, et al. Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology 2000 ; 141 : 3799–3806. [CrossRef] [PubMed] [Google Scholar]
  7. Cuesta M, Cermakian N, Boivin DB. Glucocorticoids entrain molecular clock components in human peripheral cells. FASEB J 2015 ; 29 : 1360–1370. [CrossRef] [PubMed] [Google Scholar]
  8. Okabe T, Chavan R, Fonseca Costa SS, et al. REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci 2016 ; 129 : 4143–4154. [PubMed] [Google Scholar]
  9. Lamia KA, Papp SJ, Yu RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011 ; 480 : 552–556. [PubMed] [Google Scholar]
  10. Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 2009 ; 23 : 1572–1583. [CrossRef] [PubMed] [Google Scholar]
  11. McNamara P, Seo SB, Rudic RD, et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 2001 ; 105 : 877–889. [CrossRef] [PubMed] [Google Scholar]
  12. Nakamura TJ, Sellix MT, Menaker M, et al. Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab 2008 ; 295 : E1025–E1031. [CrossRef] [PubMed] [Google Scholar]
  13. Dufour CR, Levasseur M-P, Pham NHH, et al. Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genet 2011 ; 7 : e1002143. [CrossRef] [PubMed] [Google Scholar]
  14. Horard B, Rayet B, Triqueneaux G, et al. Expression of the orphan nuclear receptor ERRalpha is under circadian regulation in estrogen-responsive tissues. J Mol Endocrinol 2004 ; 33 : 87–97. [CrossRef] [PubMed] [Google Scholar]
  15. Curtis AM, Bellet MM, Sassone-Corsi P, et al. Circadian clock proteins and immunity. Immunity 2014 ; 40 : 178–186. [CrossRef] [PubMed] [Google Scholar]
  16. Pick R, He W, Chen C-S, et al. Time-of-Day-Dependent Trafficking and Function of Leukocyte Subsets. Trends Immunol 2019 ; 40 : 524–537. [CrossRef] [PubMed] [Google Scholar]
  17. Scheiermann C, Gibbs J, Ince L, et al. Clocking in to immunity. Nat Rev Immunol 2018 ; 18 : 423–437. [CrossRef] [PubMed] [Google Scholar]
  18. Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 2014 ; 20 : 919–926. [CrossRef] [PubMed] [Google Scholar]
  19. Man K, Loudon A, Chawla A. Immunity around the clock. Science 2016 ; 354 : 999–1003. [CrossRef] [PubMed] [Google Scholar]
  20. Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA 2012 ; 109 : 582–587. [CrossRef] [PubMed] [Google Scholar]
  21. Nguyen KD, Fentress SJ, Qiu Y, et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 2013 ; 341 : 1483–1488. [CrossRef] [PubMed] [Google Scholar]
  22. Groslambert M, Py BF. NLRP3, un inflammasome sous contrôle. Med Sci (Paris) 2018 ; 34 : 47–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Pourcet B, Zecchin M, Ferri L, et al. Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology 2018 ; 154 : 1449–64e20. [CrossRef] [PubMed] [Google Scholar]
  24. Wang S, Lin Y, Yuan X, et al. REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat Commun 2018 ; 9 : 4246. [CrossRef] [PubMed] [Google Scholar]
  25. Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. Lancet 1978 ; 1 : 795–797. [CrossRef] [Google Scholar]
  26. Puttonen S, Kivimaki M, Elovainio M, et al. Shift work in young adults and carotid artery intima-media thickness: The Cardiovascular Risk in Young Finns study. Atherosclerosis 2009 ; 205 : 608–613. [CrossRef] [PubMed] [Google Scholar]
  27. Morris CJ, Purvis TE, Mistretta J, et al. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. J Biol Rhythms 2017 ; 32 : 154–164. [CrossRef] [PubMed] [Google Scholar]
  28. Bøggild H, Knutsson A. Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 1999 ; 25 : 85–99. [CrossRef] [PubMed] [Google Scholar]
  29. Ma H, Zhong W, Jiang Y, et al. Increased atherosclerotic lesions in LDL receptor deficient mice with hematopoietic nuclear receptor Rev-erbα knock- down. J Am Heart Assoc 2013 ; 2 : e000235. [CrossRef] [PubMed] [Google Scholar]
  30. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010 ; 464 : 1357–1361. [CrossRef] [PubMed] [Google Scholar]
  31. Huo M, Huang Y, Qu D, et al. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis. FASEB J 2017 ; 31 : 1097–1106. [CrossRef] [PubMed] [Google Scholar]
  32. Yang G, Zhang J, Jiang T, et al. Bmal1 Deletion in Myeloid Cells Attenuates Atherosclerotic Lesion Development and Restrains Abdominal Aortic Aneurysm Formation in Hyperlipidemic Mice. Arterioscler Thromb Vasc Biol 2020; 40 : 1523–32. [CrossRef] [PubMed] [Google Scholar]
  33. McAlpine CS, Kiss MG, Rattik S, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019 ; 566 : 383–387. [PubMed] [Google Scholar]
  34. Schilperoort M, Berg R van den, Bosmans LA, et al. Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice. J Pineal Res 2020; 68 : e12614. [CrossRef] [PubMed] [Google Scholar]
  35. Winter C, Silvestre-Roig C, Ortega-Gomez A, et al. Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metab 2018 ; 28 : 175–82.e5. [CrossRef] [PubMed] [Google Scholar]
  36. Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, et al. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 2014 ; 114 : 1713–1722. [CrossRef] [PubMed] [Google Scholar]
  37. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, et al. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 2010 ; 106 : 546–550. [CrossRef] [PubMed] [Google Scholar]
  38. Montaigne D, Marechal X, Modine T, et al. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet 2018 ; 391 : 59–69. [CrossRef] [PubMed] [Google Scholar]
  39. Reitz CJ, Alibhai FJ, Khatua TN, et al. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2019 ; 2 : 353. [CrossRef] [PubMed] [Google Scholar]
  40. Zhang L, Zhang R, Tien C-L, et al. REV-ERBα ameliorates heart failure through transcription repression. JCI Insight 2017 ; 2 : 95177. [CrossRef] [PubMed] [Google Scholar]
  41. Schloss MJ, Hilby M, Nitz K, et al. Ly6Chigh Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction-Brief Report. Arterioscler Throm Vasc Biol 2017 ; 37 : 1640–1645. [CrossRef] [PubMed] [Google Scholar]
  42. Song S, Tien C-L, Cui H, et al. Myocardial Rev-erb-Mediated Diurnal Metabolic Rhythm and Obesity Paradox. Circulation 2022; 145 : 448–64. [CrossRef] [PubMed] [Google Scholar]
  43. Ince LM, Zhang Z, Beesley S, et al. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells. FASEB J 2019 ; 33 : 126–139. [CrossRef] [PubMed] [Google Scholar]
  44. Pariollaud M, Gibbs JE, Hopwood TW, et al. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J Clin Invest 2018 ; 128 : 2281–2296. [CrossRef] [PubMed] [Google Scholar]
  45. Maidstone RJ, Turner J, Vetter C, et al. Night shift work is associated with an increased risk of asthma. Thorax 2021; 76 : 53–60. [CrossRef] [PubMed] [Google Scholar]
  46. Scheer FAJL, Hilton MF, Evoniuk HL, et al. The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc Natl Acad Sci USA 2021; 118 : e2018486118. [CrossRef] [PubMed] [Google Scholar]
  47. Ehlers A, Xie W, Agapov E, et al. BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal Immunol 2018 ; 11 : 97–111. [CrossRef] [PubMed] [Google Scholar]
  48. Zasłona Z, Case S, Early JO, et al. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol 2017 ; 312 : L855–L860. [CrossRef] [PubMed] [Google Scholar]
  49. Durrington HJ, Krakowiak K, Meijer P, et al. Circadian asthma airway responses are gated by REV-ERBα. Eur Respir J 2020; 56 : 1902407. [CrossRef] [PubMed] [Google Scholar]
  50. Cederroth CR, Albrecht U, Bass J, et al. Medicine in the Fourth Dimension. Cell Metab 2019 ; 30 : 238–250. [CrossRef] [PubMed] [Google Scholar]
  51. Printezi MI, Kilgallen AB, Bond MJG, et al. Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncol 2022; 23 : e129–43. [CrossRef] [PubMed] [Google Scholar]
  52. Lévi F. Daytime versus evening infusions of immune checkpoint inhibitors. Lancet Oncol 2021; 22 : 1648–50. [CrossRef] [PubMed] [Google Scholar]
  53. Lévi F, Okyar A, Dulong S, et al. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 2010 ; 50 : 377–421. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.