Free Access
Med Sci (Paris)
Volume 38, Number 2, Février 2022
Page(s) 168 - 176
Section M/S Revues
Published online 18 February 2022
  1. Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018 ; 99 : 64–82.e7. [CrossRef] [PubMed] [Google Scholar]
  2. Nacheva EP, Ward KN, Brazma D, et al. Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol 2008 ; 80 : 1952–1958. [CrossRef] [PubMed] [Google Scholar]
  3. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)(n), present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988 ; 85 : 6622–6626. [CrossRef] [PubMed] [Google Scholar]
  4. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999 ; 97 : 503–514. [CrossRef] [PubMed] [Google Scholar]
  5. de Lange T.. Shelterin-Mediated Telomere Protection. Annu Rev Genet 2018 ; 52 : 223–247. [CrossRef] [PubMed] [Google Scholar]
  6. Timashev LA, Lange T De. Characterization of t-loop formation by TRF2. Nucleus 2020; 11 : 164–77. [CrossRef] [PubMed] [Google Scholar]
  7. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019 ; 20 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  8. Capper R, Britt-Compton B, Tankimanova M, et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev 2007 ; 21 : 2495–2508. [CrossRef] [PubMed] [Google Scholar]
  9. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003 ; 13 : 1549–1556. [CrossRef] [PubMed] [Google Scholar]
  10. O’Sullivan RJ, Karlseder J. Telomeres: Protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010 ; 11 : 171–181. [CrossRef] [PubMed] [Google Scholar]
  11. Doksani Y, Wu JY, de Lange T, et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 2013 ; 155 : 345. [CrossRef] [PubMed] [Google Scholar]
  12. Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet 2018 ; 34 : 518–531. [CrossRef] [PubMed] [Google Scholar]
  13. Muylaert I, Elias P. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. J Biol Chem 2007 ; 282 : 10865–10872. [CrossRef] [PubMed] [Google Scholar]
  14. Schumacher AJ, Mohni KN, Kan Y, et al. The HSV-1 Exonuclease, UL12, Stimulates Recombination by a Single Strand Annealing Mechanism. PLoS Pathog 2012 ; 8 : e1002862. [CrossRef] [PubMed] [Google Scholar]
  15. Reuven NB, Willcox S, Griffith JD, et al. Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: Potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J Mol Biol 2004 ; 342 : 57–71. [CrossRef] [PubMed] [Google Scholar]
  16. Previdelli RL, Bertzbach LD, Wight DJ, et al. The role of Marek’s disease virus UL12 and UL29 in DNA recombination and the virus lifecycle. Viruses 2019; 11. [Google Scholar]
  17. Darren J, Wight J, Sanyal A, et al. Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018 ; 10 : 656. [CrossRef] [Google Scholar]
  18. Gilbert-Girard S, Gravel A, Collin V, et al. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16 : e1008496. [CrossRef] [PubMed] [Google Scholar]
  19. Wallaschek N, Sanyal A, Pirzer F, et al. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog 2016 ; 12 : 1–15. [Google Scholar]
  20. Atanasiu C, Deng Z, Wiedmer A, et al. ORC binding to TRF2 stimulates OriP replication. EMBO Rep 2006 ; 7 : 716–721. [CrossRef] [PubMed] [Google Scholar]
  21. Osterrieder N, Wallaschek N, Kaufer BB. Herpesvirus genome integration into telomeric repeats of host cell chromosomes. Annu Rev Virol 2014 ; 1 : 215–235. [CrossRef] [PubMed] [Google Scholar]
  22. Santoro F, Kennedy PE, Locatelli G, et al. CD46 is a cellular receptor for human herpesvirus 6. Cell 1999 ; 99 : 817–827. [CrossRef] [PubMed] [Google Scholar]
  23. Ma J, Jia J, Jiang X, et al. gp96 Is Critical for both Human Herpesvirus 6A (HHV-6A) and HHV-6B Infections. J Virol 2020; 94 : e00311–20. [PubMed] [Google Scholar]
  24. Tang H, Serada S, Kawabata A, et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci USA 2013 ; 110 : 9096–9099. [CrossRef] [PubMed] [Google Scholar]
  25. Hoe NL, Tuke PW, Tedder RS, et al. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol 2007 ; 79 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  26. Clark DA. Clinical and laboratory features of human herpesvirus 6 chromosomal integration. Clin Microbiol Infect 2016 ; 22 : 333–339. [CrossRef] [PubMed] [Google Scholar]
  27. Godet AN, Soignon G, Koubi H, et al. Presence of HHV-6 genome in spermatozoa in a context of couples with low fertility: What type of infection?. Andrologia 2015 ; 47 : 531–535. [CrossRef] [PubMed] [Google Scholar]
  28. Gravel A, Dubuc I, Morissette G, et al. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci USA 2015 ; 112 : 8058–8063. [Google Scholar]
  29. Matsuo T, Heller M, Petti L, et al. Persistence of the entire epstein-barr virus genome integrated into human lymphocyte DNA. Science 1984 ; 226 : 1322–1325. [CrossRef] [PubMed] [Google Scholar]
  30. Xiao K, Yu Z, Li X, et al. Genome-wide analysis of Epstein-Barr Virus (EBV) integration and strain in C666–1 and Raji cells. J Cancer 2016 ; 7 : 214–224. [CrossRef] [PubMed] [Google Scholar]
  31. Bernasconi M, Berger C, Sigrist JA, et al. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray. Virol J 2006 ; 3 : 43. [CrossRef] [PubMed] [Google Scholar]
  32. McCarty DM, Young SM, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004 ; 38 : 819–845. [CrossRef] [PubMed] [Google Scholar]
  33. Huang Y, Hidalgo-Bravo A, Zhang E, et al. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res 2014 ; 42 : 315–327. [CrossRef] [PubMed] [Google Scholar]
  34. Arbuckle JH, Pantry SN, Medveczky MM, et al. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology 2013 ; 442 : 3–11. [CrossRef] [Google Scholar]
  35. Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med 2011 ; 208 : 605–615. [CrossRef] [PubMed] [Google Scholar]
  36. Trempe F, Gravel A, Dubuc I, et al. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 2015 ; 4444 : 1–15. [Google Scholar]
  37. Wallaschek N, Gravel A, Flamand L, et al. The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J Gen Viroly 2016 ; 97 : 1899–1903. [CrossRef] [PubMed] [Google Scholar]
  38. Collin V, Gravel A, Kaufer BB, et al. The promyelocytic leukemia protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16 : e1008683. [CrossRef] [PubMed] [Google Scholar]
  39. Endo A, Watanabe K, Ohye T, et al. Molecular and virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clinl Infect Dis 2014 ; 59 : 545–548. [CrossRef] [PubMed] [Google Scholar]
  40. Bonnafous P, Phan TL, Himes R, et al. Evaluation of liver failure in a pediatric transplant recipient of a liver allograft with inherited chromosomally integrated HHV-6B. J Med Virol 2020; 92 : 241–50. [CrossRef] [PubMed] [Google Scholar]
  41. Petit V, Bonnafous P, Fages V, et al. Donor-to-recipient transmission and reactivation in a kidney transplant recipient of an inherited chromosomally integrated HHV-6A: Evidence and outcomes. Am J Transplant 2020; 20 : 3667–72. [CrossRef] [PubMed] [Google Scholar]
  42. Chang ACY, Chang ACH, Kirillova A, et al. Telomere shortening is a hallmark of genetic cardiomyopathies. Proc Natl Acad Sci U S A 2018 ; 115 : 9276–9281. [CrossRef] [PubMed] [Google Scholar]
  43. Saliques S, Zeller M, Lorin J, et al. Telomere length and cardiovascular disease. Arch Cardiovasc Dis 2010 ; 103 : 454–459. [CrossRef] [PubMed] [Google Scholar]
  44. Das BB. A neonate with acute heart failure: Chromosomally integrated human herpesvirus 6-associated dilated cardiomyopathy. J Pediatr 2015 ; 167 : 188–92.e1. [CrossRef] [PubMed] [Google Scholar]
  45. Kühl U, Lassner D, Wallaschek N, et al. Chromosomally integrated human herpesvirus 6 in heart failure: Prevalence and treatment. Eur J Heart Fail 2015 ; 17 : 9–19. [CrossRef] [PubMed] [Google Scholar]
  46. Tweedy J, Spyrou MA, Pearson M, et al. Complete genome sequence of germline chromosomally integrated human herpesvirus 6A and analyses integration sites define a new human endogenous virus with potential to reactivate as an emerging infection. Viruses 2016 ; 8 : 19. [CrossRef] [Google Scholar]
  47. Mouammine A, Gravel A, Dubuc I, et al. Rs73185306 C/T Is Not a Predisposing Risk Factor for Inherited Chromosomally Integrated Human Herpesvirus 6A/B. J Infect Dis 2020; 221 : 878–81. [PubMed] [Google Scholar]
  48. Tweedy J, Spyrou MA, Hubacek P, et al. Analyses of germline, chromosomally integrated human herpesvirus 6A and B genomes indicate emergent infection and new inflammatory mediators. J Gen Virol 2015 ; 96 : 370–389. [CrossRef] [PubMed] [Google Scholar]
  49. Kreilmeier T, Mejri D, Hauck M, et al. Telomere transcripts target telomerase in human cancer cells. Genes 2016 ; 7 : 46. [CrossRef] [Google Scholar]
  50. Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. International J Biol Sci 2015 ; 11 : 316–323. [CrossRef] [Google Scholar]
  51. Peddu V, Dubuc I, Gravel A, et al. Inherited Chromosomally Integrated Human Herpesvirus 6 Demonstrates Tissue-Specific RNA Expression In Vivo That Correlates with an Increased Antibody Immune Response. J Virol 2019 ; 94 : e01418–e01419. [CrossRef] [PubMed] [Google Scholar]
  52. Gaccioli F, Lager S, Goffau MC de, et al. Fetal inheritance of chromosomally integrated human herpesvirus 6 predisposes the mother to pre-eclampsia. Nat Microbiol 2020; 5 : 901–8. [CrossRef] [PubMed] [Google Scholar]
  53. Miura H, Kawamura Y, Ohye T, et al. Inherited Chromosomally Integrated Human Herpesvirus 6 Is a Risk Factor for Spontaneous Abortion. J Infect Dis 2021; 223 : 1717–23. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.