Accès gratuit
Numéro
Med Sci (Paris)
Volume 38, Numéro 2, Février 2022
Page(s) 168 - 176
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022008
Publié en ligne 18 février 2022
  1. Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018 ; 99 : 64–82.e7. [CrossRef] [PubMed] [Google Scholar]
  2. Nacheva EP, Ward KN, Brazma D, et al. Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol 2008 ; 80 : 1952–1958. [CrossRef] [PubMed] [Google Scholar]
  3. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)(n), present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988 ; 85 : 6622–6626. [CrossRef] [PubMed] [Google Scholar]
  4. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999 ; 97 : 503–514. [CrossRef] [PubMed] [Google Scholar]
  5. de Lange T.. Shelterin-Mediated Telomere Protection. Annu Rev Genet 2018 ; 52 : 223–247. [CrossRef] [PubMed] [Google Scholar]
  6. Timashev LA, Lange T De. Characterization of t-loop formation by TRF2. Nucleus 2020; 11 : 164–77. [CrossRef] [PubMed] [Google Scholar]
  7. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019 ; 20 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  8. Capper R, Britt-Compton B, Tankimanova M, et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev 2007 ; 21 : 2495–2508. [CrossRef] [PubMed] [Google Scholar]
  9. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003 ; 13 : 1549–1556. [CrossRef] [PubMed] [Google Scholar]
  10. O’Sullivan RJ, Karlseder J. Telomeres: Protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010 ; 11 : 171–181. [CrossRef] [PubMed] [Google Scholar]
  11. Doksani Y, Wu JY, de Lange T, et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 2013 ; 155 : 345. [CrossRef] [PubMed] [Google Scholar]
  12. Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet 2018 ; 34 : 518–531. [CrossRef] [PubMed] [Google Scholar]
  13. Muylaert I, Elias P. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. J Biol Chem 2007 ; 282 : 10865–10872. [CrossRef] [PubMed] [Google Scholar]
  14. Schumacher AJ, Mohni KN, Kan Y, et al. The HSV-1 Exonuclease, UL12, Stimulates Recombination by a Single Strand Annealing Mechanism. PLoS Pathog 2012 ; 8 : e1002862. [CrossRef] [PubMed] [Google Scholar]
  15. Reuven NB, Willcox S, Griffith JD, et al. Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: Potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J Mol Biol 2004 ; 342 : 57–71. [CrossRef] [PubMed] [Google Scholar]
  16. Previdelli RL, Bertzbach LD, Wight DJ, et al. The role of Marek’s disease virus UL12 and UL29 in DNA recombination and the virus lifecycle. Viruses 2019; 11. [Google Scholar]
  17. Darren J, Wight J, Sanyal A, et al. Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018 ; 10 : 656. [CrossRef] [Google Scholar]
  18. Gilbert-Girard S, Gravel A, Collin V, et al. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16 : e1008496. [CrossRef] [PubMed] [Google Scholar]
  19. Wallaschek N, Sanyal A, Pirzer F, et al. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog 2016 ; 12 : 1–15. [Google Scholar]
  20. Atanasiu C, Deng Z, Wiedmer A, et al. ORC binding to TRF2 stimulates OriP replication. EMBO Rep 2006 ; 7 : 716–721. [CrossRef] [PubMed] [Google Scholar]
  21. Osterrieder N, Wallaschek N, Kaufer BB. Herpesvirus genome integration into telomeric repeats of host cell chromosomes. Annu Rev Virol 2014 ; 1 : 215–235. [CrossRef] [PubMed] [Google Scholar]
  22. Santoro F, Kennedy PE, Locatelli G, et al. CD46 is a cellular receptor for human herpesvirus 6. Cell 1999 ; 99 : 817–827. [CrossRef] [PubMed] [Google Scholar]
  23. Ma J, Jia J, Jiang X, et al. gp96 Is Critical for both Human Herpesvirus 6A (HHV-6A) and HHV-6B Infections. J Virol 2020; 94 : e00311–20. [PubMed] [Google Scholar]
  24. Tang H, Serada S, Kawabata A, et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci USA 2013 ; 110 : 9096–9099. [CrossRef] [PubMed] [Google Scholar]
  25. Hoe NL, Tuke PW, Tedder RS, et al. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol 2007 ; 79 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  26. Clark DA. Clinical and laboratory features of human herpesvirus 6 chromosomal integration. Clin Microbiol Infect 2016 ; 22 : 333–339. [CrossRef] [PubMed] [Google Scholar]
  27. Godet AN, Soignon G, Koubi H, et al. Presence of HHV-6 genome in spermatozoa in a context of couples with low fertility: What type of infection?. Andrologia 2015 ; 47 : 531–535. [CrossRef] [PubMed] [Google Scholar]
  28. Gravel A, Dubuc I, Morissette G, et al. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci USA 2015 ; 112 : 8058–8063. [Google Scholar]
  29. Matsuo T, Heller M, Petti L, et al. Persistence of the entire epstein-barr virus genome integrated into human lymphocyte DNA. Science 1984 ; 226 : 1322–1325. [CrossRef] [PubMed] [Google Scholar]
  30. Xiao K, Yu Z, Li X, et al. Genome-wide analysis of Epstein-Barr Virus (EBV) integration and strain in C666–1 and Raji cells. J Cancer 2016 ; 7 : 214–224. [CrossRef] [PubMed] [Google Scholar]
  31. Bernasconi M, Berger C, Sigrist JA, et al. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray. Virol J 2006 ; 3 : 43. [CrossRef] [PubMed] [Google Scholar]
  32. McCarty DM, Young SM, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004 ; 38 : 819–845. [CrossRef] [PubMed] [Google Scholar]
  33. Huang Y, Hidalgo-Bravo A, Zhang E, et al. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res 2014 ; 42 : 315–327. [CrossRef] [PubMed] [Google Scholar]
  34. Arbuckle JH, Pantry SN, Medveczky MM, et al. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology 2013 ; 442 : 3–11. [CrossRef] [Google Scholar]
  35. Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med 2011 ; 208 : 605–615. [CrossRef] [PubMed] [Google Scholar]
  36. Trempe F, Gravel A, Dubuc I, et al. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 2015 ; 4444 : 1–15. [Google Scholar]
  37. Wallaschek N, Gravel A, Flamand L, et al. The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J Gen Viroly 2016 ; 97 : 1899–1903. [CrossRef] [PubMed] [Google Scholar]
  38. Collin V, Gravel A, Kaufer BB, et al. The promyelocytic leukemia protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16 : e1008683. [CrossRef] [PubMed] [Google Scholar]
  39. Endo A, Watanabe K, Ohye T, et al. Molecular and virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clinl Infect Dis 2014 ; 59 : 545–548. [CrossRef] [PubMed] [Google Scholar]
  40. Bonnafous P, Phan TL, Himes R, et al. Evaluation of liver failure in a pediatric transplant recipient of a liver allograft with inherited chromosomally integrated HHV-6B. J Med Virol 2020; 92 : 241–50. [CrossRef] [PubMed] [Google Scholar]
  41. Petit V, Bonnafous P, Fages V, et al. Donor-to-recipient transmission and reactivation in a kidney transplant recipient of an inherited chromosomally integrated HHV-6A: Evidence and outcomes. Am J Transplant 2020; 20 : 3667–72. [CrossRef] [PubMed] [Google Scholar]
  42. Chang ACY, Chang ACH, Kirillova A, et al. Telomere shortening is a hallmark of genetic cardiomyopathies. Proc Natl Acad Sci U S A 2018 ; 115 : 9276–9281. [CrossRef] [PubMed] [Google Scholar]
  43. Saliques S, Zeller M, Lorin J, et al. Telomere length and cardiovascular disease. Arch Cardiovasc Dis 2010 ; 103 : 454–459. [CrossRef] [PubMed] [Google Scholar]
  44. Das BB. A neonate with acute heart failure: Chromosomally integrated human herpesvirus 6-associated dilated cardiomyopathy. J Pediatr 2015 ; 167 : 188–92.e1. [CrossRef] [PubMed] [Google Scholar]
  45. Kühl U, Lassner D, Wallaschek N, et al. Chromosomally integrated human herpesvirus 6 in heart failure: Prevalence and treatment. Eur J Heart Fail 2015 ; 17 : 9–19. [CrossRef] [PubMed] [Google Scholar]
  46. Tweedy J, Spyrou MA, Pearson M, et al. Complete genome sequence of germline chromosomally integrated human herpesvirus 6A and analyses integration sites define a new human endogenous virus with potential to reactivate as an emerging infection. Viruses 2016 ; 8 : 19. [CrossRef] [Google Scholar]
  47. Mouammine A, Gravel A, Dubuc I, et al. Rs73185306 C/T Is Not a Predisposing Risk Factor for Inherited Chromosomally Integrated Human Herpesvirus 6A/B. J Infect Dis 2020; 221 : 878–81. [PubMed] [Google Scholar]
  48. Tweedy J, Spyrou MA, Hubacek P, et al. Analyses of germline, chromosomally integrated human herpesvirus 6A and B genomes indicate emergent infection and new inflammatory mediators. J Gen Virol 2015 ; 96 : 370–389. [CrossRef] [PubMed] [Google Scholar]
  49. Kreilmeier T, Mejri D, Hauck M, et al. Telomere transcripts target telomerase in human cancer cells. Genes 2016 ; 7 : 46. [CrossRef] [Google Scholar]
  50. Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. International J Biol Sci 2015 ; 11 : 316–323. [CrossRef] [Google Scholar]
  51. Peddu V, Dubuc I, Gravel A, et al. Inherited Chromosomally Integrated Human Herpesvirus 6 Demonstrates Tissue-Specific RNA Expression In Vivo That Correlates with an Increased Antibody Immune Response. J Virol 2019 ; 94 : e01418–e01419. [CrossRef] [PubMed] [Google Scholar]
  52. Gaccioli F, Lager S, Goffau MC de, et al. Fetal inheritance of chromosomally integrated human herpesvirus 6 predisposes the mother to pre-eclampsia. Nat Microbiol 2020; 5 : 901–8. [CrossRef] [PubMed] [Google Scholar]
  53. Miura H, Kawamura Y, Ohye T, et al. Inherited Chromosomally Integrated Human Herpesvirus 6 Is a Risk Factor for Spontaneous Abortion. J Infect Dis 2021; 223 : 1717–23. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.