Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 2, Février 2022
Page(s) 159 - 167
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022010
Publié en ligne 18 février 2022
  1. LevineB, KroemerG. Biological functions of autophagy genes: A disease perspective. Cell 2019 ; 176 : 11–42. [CrossRef] [PubMed] [Google Scholar]
  2. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med 2020; 383 : 1564–76. [CrossRef] [PubMed] [Google Scholar]
  3. LiuEY, RyanKM. Autophagy and cancer: Issues we need to digest. J Cell Sc 2012 ; 125 : 2349–2358. [Google Scholar]
  4. LiangXH, JacksonS, SeamanM, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999 ; 402 : 672–676. [CrossRef] [PubMed] [Google Scholar]
  5. Liu W, Meng Y, Zong C, et al. Autophagy and tumorigenesis. Adv Exp Med Biol 2020; 1207 : 275–99. [CrossRef] [PubMed] [Google Scholar]
  6. Daskalaki I, Gkikas I, Tavernarakis N. Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol 2018; 6. [PubMed] [Google Scholar]
  7. GuadamillasMC, CerezoA, del PozoMA. Overcoming anoikis: Pathways to anchorage-independent growth in cancer. J Cell Sci 2011 ; 124 : 3189–3197. [CrossRef] [PubMed] [Google Scholar]
  8. AmaravadiRK, KimmelmanAC, DebnathJ. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov 2019 ; 9 : 1167–1181. [CrossRef] [PubMed] [Google Scholar]
  9. ChenY, LiX, GuoL, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep 2015 ; 12 : 1645–1652. [CrossRef] [PubMed] [Google Scholar]
  10. ChengCY, LiuJC, WangJJ, et al. Autophagy inhibition increased the anti-tumor effect of cisplatin on drug-resistant esophageal cancer cells. J Biol Regul Homeost Agents 2017 ; 31 : 645–652. [PubMed] [Google Scholar]
  11. NazioF, BordiM, CianfanelliV, et al. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 2019 ; 26 : 690–702. [CrossRef] [PubMed] [Google Scholar]
  12. ViryE, BaginskaJ, BerchemG, et al. Autophagic degradation of GZMB/granzyme B: a new mechanism of hypoxic tumor cell escape from natural killer cell-mediated lysis. Autophagy 2014 ; 10 : 173–175. [CrossRef] [PubMed] [Google Scholar]
  13. ChoiY, BowmanJ, JungJ. Autophagy during viral infection: A double-edged sword. Nat Rev Microbiol 2018 ; 16 : 341–354. [CrossRef] [PubMed] [Google Scholar]
  14. JoubertP-E, MeiffrenG, GrégoireIP, et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 2009 ; 6 : 354–366. [CrossRef] [PubMed] [Google Scholar]
  15. KudchodkarSB, LevineB. Viruses and autophagy. Rev Med Virol 2009 ; 19 : 359–378. [CrossRef] [PubMed] [Google Scholar]
  16. JoubertP-E, WernekeS, de la CalleC, et al. Chikungunya-induced cell death is limited by ER and oxidative stress-induced autophagy. Autophagy 2012 ; 8 : 1261–1263. [CrossRef] [PubMed] [Google Scholar]
  17. OrvedahlA, MacPhersonS, SumpterR, et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010 ; 7 : 115–127. [CrossRef] [PubMed] [Google Scholar]
  18. SagnierS, DaussyCF, BorelS, et al. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 2015 ; 89 : 615–625. [CrossRef] [PubMed] [Google Scholar]
  19. LeeHK, LundJM, RamanathanB, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007 ; 315 : 1398–1401. [CrossRef] [PubMed] [Google Scholar]
  20. PaludanC, SchmidD, LandthalerM, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005 ; 307 : 593–596. [CrossRef] [PubMed] [Google Scholar]
  21. JoubertP-E, AlbertML. Autophagy during viral infections: a double-edge sword. Virol Montrouge Fr 2013 ; 17 : 331–342. [Google Scholar]
  22. Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2012; 3. [PubMed] [Google Scholar]
  23. JacksonWT, Jr THG, Taylor MP, et al. Subversion of cellular autophagosomal machinery by RNA Viruses. PLOS Biol 2005 ; 3 : e156. [CrossRef] [PubMed] [Google Scholar]
  24. MesriEA, FeitelsonMA, MungerK. Human viral oncogenesis: A cancer hallmarks analysis. Cell Host Microbe 2014 ; 15 : 266–282. [CrossRef] [PubMed] [Google Scholar]
  25. BelleudiF, NanniM, RaffaS, et al. HPV16 E5 deregulates the autophagic process in human keratinocytes. Oncotarget 2015 ; 6 : 9370–9386. [CrossRef] [PubMed] [Google Scholar]
  26. CarchmanEH, MatkowskyjKA, MeskeL, et al. Dysregulation of autophagy contributes to anal carcinogenesis. PloS One 2016 ; 11 : e0164273. [CrossRef] [PubMed] [Google Scholar]
  27. KhanM, ImamH, SiddiquiA. Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. Liver Res 2018 ; 2 : 146–156. [CrossRef] [PubMed] [Google Scholar]
  28. LeidalAM, CyrDP, HillRJ, et al. Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe 2012 ; 11 : 167–180. [CrossRef] [PubMed] [Google Scholar]
  29. YinH, QuJ, PengQ, et al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2019 ; 208 : 573–583. [CrossRef] [PubMed] [Google Scholar]
  30. RenT, TakahashiY, LiuX, et al. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene 2015 ; 34 : 334–345. [CrossRef] [PubMed] [Google Scholar]
  31. Matos AL de, Franco LS, McFadden G. Oncolytic viruses and the immune system: The dynamic duo. Mol. Ther. - Methods Clin Dev 2020; 17 : 349–58. [CrossRef] [Google Scholar]
  32. KoksCA, GargAD, EhrhardtM, et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2015 ; 136 : E313–E325. [PubMed] [Google Scholar]
  33. WhildingLM, ArchibaldKM, KulbeH, et al. Vaccinia virus induces programmed necrosis in ovarian cancer cells. Mol Ther 2013 ; 21 : 2074–2086. [CrossRef] [PubMed] [Google Scholar]
  34. LinderB, Kögel D. Autophagy in cancer cell death. Biology 2019 ; 8 : 82. [Google Scholar]
  35. GalluzziL, VitaleI, AbramsJM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012 ; 19 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  36. Jin K-T, Tao X-H, Fan Y-B, et al. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed Pharmacother 2021; 134 : 110932. [CrossRef] [PubMed] [Google Scholar]
  37. QuX, ZouZ, SunQ, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007 ; 128 : 931–946. [CrossRef] [PubMed] [Google Scholar]
  38. MichaudM, MartinsI, SukkurwalaAQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011 ; 334 : 1573–1577. [CrossRef] [PubMed] [Google Scholar]
  39. LiikanenI, AhtiainenL, HirvinenML, et al. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 2013 ; 21 : 1212–1223. [CrossRef] [PubMed] [Google Scholar]
  40. YeT, JiangK, WeiL, et al. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. Am J Cancer Res 2018 ; 8 : 1514–1527. [PubMed] [Google Scholar]
  41. KleinSR, JiangH, HossainMB, et al. Critical role of autophagy in the processing of adenovirus capsid-incorporated cancer-specific antigens. PloS One 2016 ; 11 : e0153814. [CrossRef] [PubMed] [Google Scholar]
  42. TongY, YouL, LiuH, et al. Potent antitumor activity of oncolytic adenovirus expressing beclin-1 via induction of autophagic cell death in leukemia. Oncotarget 2013 ; 4 : 860–874. [CrossRef] [PubMed] [Google Scholar]
  43. Lei W, Wang S, Xu N, et al. Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with beclin-1, an autophagic gene in leukemia and myeloma. Biomed Pharmacother 2020; 125 : 110030. [CrossRef] [PubMed] [Google Scholar]
  44. MengG, XiaM, WangD, et al. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 2014 ; 5 : 6365–6374. [CrossRef] [PubMed] [Google Scholar]
  45. WangW, ZhouJ, ShiJ, et al. Human T-cell leukemia virus type 1 tax-deregulated autophagy pathway and c-FLIP expression contribute to resistance against death receptor-mediated apoptosis. J Virol 2014 ; 88 : 2786–2798. [CrossRef] [PubMed] [Google Scholar]
  46. MaoY, DaL, TangH, et al. Hepatitis B virus X protein reduces starvation-induced cell death through activation of autophagy and inhibition of mitochondrial apoptotic pathway. Biochem Biophys Res Commun 2011 ; 415 : 68–74. [CrossRef] [PubMed] [Google Scholar]
  47. Luo X, Donnelly CR, Gong W, et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J Clin Invest 2020; 130 : 1635–52. [CrossRef] [PubMed] [Google Scholar]
  48. FlissPM, JowersTP, BrinkmannMM, et al. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLOS Pathog 2012 ; 8 : e1002517. [CrossRef] [PubMed] [Google Scholar]
  49. ViryE, BaginskaJ, BerchemG, et al. Autophagic degradation of GZMB/granzyme B. Autophagy 2014 ; 10 : 173–175. [CrossRef] [PubMed] [Google Scholar]
  50. NomanMZ, JanjiB, KaminskaB, et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 2011 ; 71 : 185976–5986. [CrossRef] [PubMed] [Google Scholar]
  51. Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020; 581 : 100–5. [CrossRef] [PubMed] [Google Scholar]
  52. BenkheilM, Van HaeleM, RoskamsT, et al. CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Exp Cell Res 2018 ; 372. [PubMed] [Google Scholar]
  53. Zhang Y, Li J, Wang S, et al. HBx-associated long non-coding RNA activated by TGF-β promotes cell invasion and migration by inducing autophagy in primary liver cancer. Int J Oncol 2020; 56 : 337–47. [PubMed] [Google Scholar]
  54. SeoJS, KimT-G, HongYS, et al. Contribution of Epstein-Barr virus infection to chemoresistance of gastric carcinoma cells to 5-fluorouracil. Arch Pharm Res 2011 ; 34 : 635–643. [CrossRef] [PubMed] [Google Scholar]
  55. WuQ, HanT, ShengX, et al. Downregulation of EB virus miR-BART4 inhibits proliferation and aggressiveness while promoting radiosensitivity of nasopharyngeal carcinoma. Biomed Pharmacother 2018 ; 108 : 741–751. [CrossRef] [PubMed] [Google Scholar]
  56. KimJH, KimWS, ParkC. Epstein-Barr virus latent membrane protein-1 protects B-cell lymphoma from rituximab-induced apoptosis through miR-155-mediated Akt activation and up-regulation of Mcl-1. Leuk Lymphoma 2012 ; 53 : 1586–1591. [CrossRef] [PubMed] [Google Scholar]
  57. PolJ, Le BœufF, DialloJS. Stratégies génétiques, immunologiques et pharmacologiques au service d’une nouvelle génération de virus anticancéreux. Med Sci (Paris) 2013 ; 29 : 165–173. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.