Open Access
Med Sci (Paris)
Volume 38, Number 1, Janvier 2022
Page(s) 9 - 12
Section Le Magazine
Published online 21 January 2022
  1. Huestis DL, Dao A, Diallo M, et al. Windborne long distance migration of malaria mosquitoes in the Sahel. Nature 2019 ; 574 : 404–408. [CrossRef] [PubMed] [Google Scholar]
  2. Bourgouin C, Paul R. Autant en emporte le vent : comment les anophèles recolonisent les régions arides du Sahel pour y transmettre le paludisme. Med Sci (Paris) 2021; 37 : 11–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Omer SM, Cloudsley-Thompson JL. Dry season biology of Anopheles gambiae giles in the Sudan. Nature 1968 ; 217 : 879–880. [CrossRef] [Google Scholar]
  4. Barry A, Bradley J, Stone W, et al. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 2021; 12 : 2443. [CrossRef] [PubMed] [Google Scholar]
  5. Chotivanich K, Udomsangpetch R, McGready R, et al. Central role of the spleen in malaria parasite clearance. J Infect Dis 2002 ; 185 : 1538–1541. [CrossRef] [PubMed] [Google Scholar]
  6. Hviid L, Jensen ATR. PfEMP1, a parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis. Adv Parasitol 2015 ; 88 : 51–84. [CrossRef] [PubMed] [Google Scholar]
  7. Lee WC, Russell B, Rénia L. Sticking for a cause: The falciparum malaria parasites cytoadherence paradigm. Front Immunol 2019 ; 10 : 1444. [CrossRef] [PubMed] [Google Scholar]
  8. Andrade CM, Fleckenstein H, Thomson-Luque R, et al. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26 : 1929–40. [CrossRef] [PubMed] [Google Scholar]
  9. Deplaine G, Safeukui I, Jeddi F, et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 2011 ; 117 : e88–e95. [CrossRef] [PubMed] [Google Scholar]
  10. Saul A. The role of variant surface antigens on malaria infected red blood cells. Parasitol Today 1999 ; 15 : 455–457. [CrossRef] [PubMed] [Google Scholar]
  11. Paul REL, Ariey F, Robert V. The evolutionary ecology of Plasmodium. Ecol Letters 2003 ; 6 : 866–880. [CrossRef] [Google Scholar]
  12. Paul REL, Coulson TN, Raibaud A, Brey PT. Sex determination in malaria parasites. Science 2000 ; 287 : 128–131. [CrossRef] [PubMed] [Google Scholar]
  13. Brancucci NMB, Gerdt JP, Wang C, et al. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 2017 ; 171 : 1532–1544. [CrossRef] [PubMed] [Google Scholar]
  14. Lawaly R, Konate L, Marrama L, et al. Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic Plasmodium falciparum infections and correlation with IgE and IgG titres. Infect Immun 2012 ; 80 : 2240–2246. [CrossRef] [PubMed] [Google Scholar]
  15. Cornet S, Nicot A, Rivero A, Gandon S. Evolution of plastic transmission strategies in avian malaria. PLoS Pathog 2014 ; 10 : e1004308. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.