Med Sci (Paris)
Volume 38, Number 1, Janvier 2022
Page(s) 12 - 14
Section Le Magazine
Published online 21 January 2022
  1. Folling A. Excretion of phenylpyruvic acid in urine as a metabolicnomaly in connection with imbecility. Nord Med Tidskr 1934 ; 8 : 1054–1059. [Google Scholar]
  2. Jervis GA. Studies on phenylpyruvic oligophrenia - The position of the metabolic error. J Biol Chem 1947 ; 169 : 651–656. [CrossRef] [PubMed] [Google Scholar]
  3. Smith I, Clayton BE, Wolff OH. Letter: a variant of phenylketonuria. Lancet 1975 ; 1 : 328–329. [CrossRef] [Google Scholar]
  4. Anikster Y, Haack TB, Vilboux T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum genet 2017 ; 100 : 257–266. [CrossRef] [PubMed] [Google Scholar]
  5. Jeannesson-Thivisol E, Feillet F, Chery C, et al. Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness. Orphanet J Rare Dis 2015 ; 10 : 158. [CrossRef] [PubMed] [Google Scholar]
  6. Ho G, Alexander I, Bhattacharya K, et al. The molecular bases of phenylketonuria (PKU) in new south wales, australia: mutation profile and correlation with tetrahydrobiopterin (BH4) responsiveness. JIMD Rep 2014 ; 14 : 55–65. [CrossRef] [PubMed] [Google Scholar]
  7. Blau N, Martinez A, Hoffmann GF, Thony B. DNAJC12 deficiency: a new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab 2018 ; 123 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  8. Li Y, Tan Z, Zhang Y, et al. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science 2021; 373 : 662–73. [CrossRef] [PubMed] [Google Scholar]
  9. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001 ; 409 : 860–921. [CrossRef] [PubMed] [Google Scholar]
  10. Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human long noncoding RNA interactome : detection, characterization and function. Int J Mol Sci 2020; 21 : 1027. [CrossRef] [Google Scholar]
  11. Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 2008 ; 29 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  12. Sueoka H, Moshinetsky A, Nagao M, Chiba S. Mutation screening of phenylketonuria in the Far East of Russia. J Hum Genet 1999 ; 44 : 368–371. [CrossRef] [PubMed] [Google Scholar]
  13. Zygulska M, Eigel A, Dworniczak B, et al. Phenylketonuria in Poland : 66 % of PKU alleles are caused by three mutations. Hum Genet 1991 ; 88 : 91–94. [CrossRef] [PubMed] [Google Scholar]
  14. MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis 2010 ; 33 : 665–670. [CrossRef] [PubMed] [Google Scholar]
  15. Lindner M, Haas D, Mayatepek E, et al. Tetrahydrobiopterin responsiveness in phenylketonuria differs between patients with the same genotype. Mol Genet Metab 2001 ; 73 : 104–106. [CrossRef] [PubMed] [Google Scholar]
  16. Danecka MK, Woidy M, Zschocke J, et al. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015 ; 52 : 175–185. [CrossRef] [PubMed] [Google Scholar]
  17. 2021. [Google Scholar]
  18. Mendes de Oliveira E, Keogh JM, Talbot F, et al. Obesity-associated GNAS mutations and the melanocortin pathway. N Engl J Med 2021; 385 : 1581–92. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.