Open Access
Issue
Med Sci (Paris)
Volume 37, Number 11, Novembre 2021
Page(s) 993 - 1001
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021164
Published online 01 December 2021
  1. Moore M, Frerichs JB. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Invest Dermatol 1953 ; 20 : 133–169. [CrossRef] [PubMed] [Google Scholar]
  2. Minias A. Subspecies-specific sequence detection for differentiation of Mycobacterium abscessus complex. Sci Rep 2020; 10: 16415. [CrossRef] [PubMed] [Google Scholar]
  3. Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016 ; 354 : 751–757. [CrossRef] [PubMed] [Google Scholar]
  4. Johansen MD, Herrmann J-L, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18 : 392–407. [CrossRef] [PubMed] [Google Scholar]
  5. Kwak N, Dalcolmo MP, Daley CL, et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J 2019 ; 54 : 1801991. [CrossRef] [PubMed] [Google Scholar]
  6. Choo SW, Wee WY, Ngeow YF, et al. Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential. Sci Rep; 4: 4061. [Google Scholar]
  7. Ripoll F, Pasek S, Schenowitz C, et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PloS One 2009 ; 4 : e5660. [CrossRef] [PubMed] [Google Scholar]
  8. Férec C. La mucoviscidose : du gène à la thérapeutique. Med Sci (Paris) 2021; 37 : 618–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Davies JC, Alton EWFW, Bush A. Cystic fibrosis. BMJ 2007 ; 335 : 1255–1259. [CrossRef] [PubMed] [Google Scholar]
  10. Catherinot E, Roux AL, Macheras E, et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J Clin Microbiol 2009 ; 47 : 271–274. [CrossRef] [PubMed] [Google Scholar]
  11. Bernut A, Dupont C, Ogryzko NV, et al. CFTR Protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses. Cell Rep. 2019 ; 26 : 1828–1840. [CrossRef] [Google Scholar]
  12. Nessar R, Cambau E, Reyrat JM, et al. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012 ; 67 : 810–818. [CrossRef] [PubMed] [Google Scholar]
  13. Yam YK, Alvarez N, Go ML, et al. Extreme drug tolerance of Mycobacterium abscessus persisters. Front Microbiol 2020; 11 : 359. [CrossRef] [PubMed] [Google Scholar]
  14. Haworth CS, Banks J, Capstick T, et al. British thoracic society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017; 72 : ii1-64. [CrossRef] [PubMed] [Google Scholar]
  15. Lavollay M, Fourgeaud M, Herrmann JL, et al. The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L. D-transpeptidases. J Bacteriol 2011 ; 193 : 778–782. [CrossRef] [PubMed] [Google Scholar]
  16. Dubée V, Triboulet S, Mainardi JL, et al. Inactivation of Mycobacterium tuberculosis L, D-transpeptidase LdtMt1 by carbapenems and cephalosporins. Antimicrob Agents Chemother 2012 ; 56 : 4189–4195. [CrossRef] [PubMed] [Google Scholar]
  17. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014 ; 12 : 35–48. [CrossRef] [PubMed] [Google Scholar]
  18. Nash KA, Brown-Elliott BA, Wallace RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009 ; 53 : 1367–1376. [CrossRef] [PubMed] [Google Scholar]
  19. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 2000 ; 44 : 3249–3256. [CrossRef] [PubMed] [Google Scholar]
  20. Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001 ; 65 : 232–260. [CrossRef] [PubMed] [Google Scholar]
  21. Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, et al. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Antimicrob Agents Chemother 2015 ; 59 : 2849–2854. [CrossRef] [PubMed] [Google Scholar]
  22. Kremer L, Besra G, Brennan P, et al. Le lipoarabinomannane : structure et fonctions d’un glycolipide impliqué dans la pathogénie tuberculeuse. Med Sci 1999 ; 15 : 842–850. [Google Scholar]
  23. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995 ; 4 : 29–63. [CrossRef] [PubMed] [Google Scholar]
  24. Viljoen A, Dubois V, Girard-Misguich F, et al. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments: MmpL structure and diversity in mycobacteria. Mol Microbiol 2017 ; 104 : 889–904. [CrossRef] [PubMed] [Google Scholar]
  25. Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01316–e01318. [CrossRef] [PubMed] [Google Scholar]
  26. Ye M, Xu L, Zou Y, et al. Molecular analysis of linezolid-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother 2018 ; 63 : e01842–e01818. [Google Scholar]
  27. Halloum I, Viljoen A, Khanna V, et al. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384. Antimicrob Agents Chemother 2017 ; 61 : e02509–e02516. [CrossRef] [PubMed] [Google Scholar]
  28. Vianna JS, Ramis IB, Bierhals D, et al. Tetrahydropyridine derivative as efflux inhibitor in Mycobacterium abscessus. J Glob Antimicrob Resist 2019 ; 17 : 296–299. [CrossRef] [PubMed] [Google Scholar]
  29. Soroka D, Dubee V, Soulier-Escrihuela O, et al. Characterization of broad-spectrum Mycobacterium abscessus class A-blactamase. J Antimicrob Chemother 2014 ; 69 : 691–696. [CrossRef] [PubMed] [Google Scholar]
  30. Dubee V, Bernut A, Cortes M, et al. b-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother 2015 ; 70 : 1051–1058. [CrossRef] [PubMed] [Google Scholar]
  31. Rominski A, Selchow P, Becker K, et al. Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. J Antimicrob Chemother 2017 ; 72 : 2191–2200. [CrossRef] [PubMed] [Google Scholar]
  32. Ung KL, Alsarraf HMAB, Olieric V, et al. Crystal structure of the aminoglycosides N-acetyltransferase Eis2 from Mycobacterium abscessus. FEBS J 2019 ; 286 : 4342–4355. [CrossRef] [PubMed] [Google Scholar]
  33. Dal Molin M, Gut M, Rominski A, et al. Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2017; 62 : e01427–17. [PubMed] [Google Scholar]
  34. Rudra P, Hurst-Hess K, Lappierre P, et al. High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase. Antimicrob Agents Chemother 2018 ; 62 : e00119–e00118. [CrossRef] [PubMed] [Google Scholar]
  35. Rominski A, Roditscheff A, Selchow P, et al. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2017 ; 72 : 376–384. [CrossRef] [PubMed] [Google Scholar]
  36. Combrink KD, Ramos AR, Spring S, et al. Rifamycin derivatives active against pathogenic rapidly-growing mycobacteria. Bioorg Med Chem Lett 2019 ; 29 : 2112–2115. [CrossRef] [PubMed] [Google Scholar]
  37. Bastian S, Veziris N, Roux A-L, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm (41) and rrl sequencing. Antimicrob Agents Chemother 2011 ; 55 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  38. Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64 : e01879–19. [PubMed] [Google Scholar]
  39. Wallace RJ, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996 ; 40 : 1676–1681. [CrossRef] [PubMed] [Google Scholar]
  40. Nessar R, Reyrat JM, Murray A, et al. Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus. J Antimicrob Chemother 2011 ; 66 : 1719–1724. [CrossRef] [PubMed] [Google Scholar]
  41. Kim SY, Kim DH, Moon SM, et al. Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium complex and Mycobacterium abscessus clinical isolates. Sci Rep 2021; 11 : 6108. [CrossRef] [PubMed] [Google Scholar]
  42. Bernut A, Lutfalla G, Kremer L. Regard à travers le danio pour mieux comprendre les interactions hôte/pathogène. Med Sci (Paris) 2015 ; 31 : 638–646. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Johansen MD, Daher W, Roquet-Banères F, et al. Rifabutin is bactericidal against intracellular and extracellular forms of Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64 : e00363–20. [CrossRef] [PubMed] [Google Scholar]
  44. Dick T, Shin SJ, Koh WJ et al. Rifabutin is active against Mycobacterium abscessus in mice. Antimicrob Agents Chemother 2019 ; 64 : e01943–e01919. [Google Scholar]
  45. Philley JV, Wallace RJ, Benwill JL, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 2015 ; 148 : 499–506. [CrossRef] [PubMed] [Google Scholar]
  46. Dupont C, Viljoen A, Thomas S, et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish. Antimicrob Agents Chemother 2017 ; 61 : e01225–e01217. [PubMed] [Google Scholar]
  47. Le Run E, Arthur M, Mainardi J-L. In vitro and intracellular activity of imipenem combined with tedizolid, rifabutin, and avibactam against Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01915–e01918. [CrossRef] [PubMed] [Google Scholar]
  48. Dupont C, Viljoen A, Dubar F, et al. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus: Inhibiting mycolic acid transport in M. abscessus. Mol Microbiol 2016 ; 101 : 515–529. [CrossRef] [PubMed] [Google Scholar]
  49. Raynaud C, Kremer L. Vers un nouvel espoir pour traiter les infections persistantes à Mycobacterium abscessus ? Med Sci (Paris) 2020; 36 : 691–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Wu ML, Aziz DB, Dartois V, et al. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018 ; 23 : 1502–1519. [CrossRef] [PubMed] [Google Scholar]
  51. Jordan B. Cent ans après, le retour de la phagothérapie ?. Med Sci (Paris) 2019 ; 35 : 806–809. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019 ; 25 : 730–733. [CrossRef] [PubMed] [Google Scholar]
  53. Dubée V, Soroka D, Cortes M, et al. Impact of β-lactamase inhibition on the activity of ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob. Agents Chemother 2015 ; 59 : 2938–2941. [CrossRef] [PubMed] [Google Scholar]
  54. Richard M, Gutiérrez AV, Viljoen AJ, et al. Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus. Front Microbiol 2018 ; 9 : 649. [CrossRef] [PubMed] [Google Scholar]
  55. Gutiérrez AV, Richard M, Roquet-Banères F, et al. The TetR family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01000–e01019. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.