Open Access
Med Sci (Paris)
Volume 37, Number 11, Novembre 2021
Page(s) 987 - 992
Section M/S Revues
Published online 01 December 2021
  1. de Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules 2018 : 23 [Google Scholar]
  2. Bonora M, Patergnani S, Rimessi A, et al. ATP synthesis and storage. Purinergic Signal 2012 ; 8 : 343–357. [CrossRef] [PubMed] [Google Scholar]
  3. Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem 2012 ; 152 : 387–395. [CrossRef] [PubMed] [Google Scholar]
  4. Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006 ; 21 : 259–268. [PubMed] [Google Scholar]
  5. Pauter AM, Olsson P, Asadi A, et al. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 2014 ; 55 : 718–728. [CrossRef] [PubMed] [Google Scholar]
  6. Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 2003 ; 126 : 1–27. [CrossRef] [PubMed] [Google Scholar]
  7. Zadravec D, Tvrdik P, Guillou H, et al. ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J Lipid Res 2011 ; 52 : 245–255. [CrossRef] [PubMed] [Google Scholar]
  8. Pan G, Cavalli M, Carlsson B, et al. rs953413 Regulates polyunsaturated fatty acid metabolism by modulating ELOVL2 expression. iScience 2020; 23 : 100808. [CrossRef] [PubMed] [Google Scholar]
  9. Fujii TM de M, Norde MM, Fisberg RM, et al. FADS1 and ELOVL2 polymorphisms reveal associations for differences in lipid metabolism in a cross-sectional population-based survey of Brazilian men and women. Nutr Res 2020; 78 : 42–9. [CrossRef] [PubMed] [Google Scholar]
  10. Barman M, Nilsson S, Torinsson Naluai Å, et al. Single nucleotide polymorphisms in the fads gene cluster but not the ELOVL2 gene are associated with serum polyunsaturated fatty acid composition and development of allergy (in a Swedish birth cohort). Nutrients 2015 ; 7 : 10100–10115. [CrossRef] [PubMed] [Google Scholar]
  11. Wang Y, Botolin D, Xu J, et al. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 2006 ; 47 : 2028–2041. [CrossRef] [PubMed] [Google Scholar]
  12. Pinto CL, Kalasekar SM, McCollum CW, et al. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development. Mol Cell Endocrinol 2016 ; 419 : 29–43. [CrossRef] [PubMed] [Google Scholar]
  13. González-Bengtsson A, Asadi A, Gao H, et al. Estrogen enhances the expression of the polyunsaturated fatty acid elongase Elovl2 via ERα in breast cancer cells. PLoS One 2016 ; 11 : e0164241. [Google Scholar]
  14. Kim D, Choi JE, Park Y. Low-linoleic acid diet and oestrogen enhance the conversion of α-linolenic acid into DHA through modification of conversion enzymes and transcription factors. Br J Nutr 2019 ; 121 : 137–145. [CrossRef] [PubMed] [Google Scholar]
  15. Wang Q, Tikhonenko M, Bozack SN, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One 2014 ; 9 : e95028. [CrossRef] [PubMed] [Google Scholar]
  16. Taniguchi I, Iwaya C, Ohnaka K, et al. Genome-wide DNA methylation analysis reveals hypomethylation in the low-CpG promoter regions in lymphoblastoid cell lines. Hum Genomics 2017 ; 11 : 8. [CrossRef] [PubMed] [Google Scholar]
  17. Chen D, Chao DL, Rocha L, et al. The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell 2020; 19 : e13100. [PubMed] [Google Scholar]
  18. Lancaster GI, Langley KG, Berglund NA, et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 2018 ; 27 : 1096–110e5. [CrossRef] [PubMed] [Google Scholar]
  19. Luo W, Xu Q, Wang Q, et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep 2017 ; 7 : 44612. [CrossRef] [PubMed] [Google Scholar]
  20. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010 ; 142 : 687–698. [CrossRef] [PubMed] [Google Scholar]
  21. Ménégaut L, Jalil A, Thomas C, et al. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis 2019 ; 291 : 52–61. [CrossRef] [PubMed] [Google Scholar]
  22. Talamonti E, Pauter AM, Asadi A, et al. Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation. Cell Mol Life Sci 2017 ; 74 : 2815–2826. [CrossRef] [PubMed] [Google Scholar]
  23. Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 2016 ; 16 : 51–67. [CrossRef] [PubMed] [Google Scholar]
  24. Oishi Y, Spann NJ, Link VM, et al. SREBP1 contributes to resolution of pro-inflammatory tlr4 signaling by reprogramming fatty acid metabolism. Cell Metab 2017 ; 25 : 412–427. [CrossRef] [PubMed] [Google Scholar]
  25. Li P, Spann NJ, Kaikkonen MU, et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 2013 ; 155 : 200–214. [CrossRef] [PubMed] [Google Scholar]
  26. Wang Y, Huang F. N-3 Polyunsaturated fatty acids and inflammation in obesity: local effect and systemic benefit. Biomed Res Int 2015 ; 2015 : 581469. [PubMed] [Google Scholar]
  27. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011 ; 2 : 304–316. [CrossRef] [PubMed] [Google Scholar]
  28. Cruciani-Guglielmacci C, Bellini L, Denom J, et al. Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol Metab 2017 ; 6 : 340–351. [CrossRef] [PubMed] [Google Scholar]
  29. Bellini L, Campana M, Rouch C, et al. Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets. Diabetologia 2018 ; 61 : 1780–1793. [CrossRef] [PubMed] [Google Scholar]
  30. Gimple RC, Kidwell RL, Kim LJY, et al. Glioma stem cell-specific superenhancer promotes polyunsaturated fatty-acid synthesis to support EGFR signaling. Cancer Discov 2019 ; 9 : 1248–1267. [CrossRef] [PubMed] [Google Scholar]
  31. Ohno Y, Suto S, Yamanaka M, et al. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci USA 2010 ; 107 : 18439–18444. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.