Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 11, Novembre 2021
Page(s) 993 - 1001
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021164
Publié en ligne 1 décembre 2021
  1. Moore M, Frerichs JB. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Invest Dermatol 1953 ; 20 : 133–169. [CrossRef] [PubMed] [Google Scholar]
  2. Minias A. Subspecies-specific sequence detection for differentiation of Mycobacterium abscessus complex. Sci Rep 2020; 10: 16415. [CrossRef] [PubMed] [Google Scholar]
  3. Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016 ; 354 : 751–757. [CrossRef] [PubMed] [Google Scholar]
  4. Johansen MD, Herrmann J-L, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18 : 392–407. [CrossRef] [PubMed] [Google Scholar]
  5. Kwak N, Dalcolmo MP, Daley CL, et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J 2019 ; 54 : 1801991. [CrossRef] [PubMed] [Google Scholar]
  6. Choo SW, Wee WY, Ngeow YF, et al. Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential. Sci Rep; 4: 4061. [Google Scholar]
  7. Ripoll F, Pasek S, Schenowitz C, et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PloS One 2009 ; 4 : e5660. [CrossRef] [PubMed] [Google Scholar]
  8. Férec C. La mucoviscidose : du gène à la thérapeutique. Med Sci (Paris) 2021; 37 : 618–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Davies JC, Alton EWFW, Bush A. Cystic fibrosis. BMJ 2007 ; 335 : 1255–1259. [CrossRef] [PubMed] [Google Scholar]
  10. Catherinot E, Roux AL, Macheras E, et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J Clin Microbiol 2009 ; 47 : 271–274. [CrossRef] [PubMed] [Google Scholar]
  11. Bernut A, Dupont C, Ogryzko NV, et al. CFTR Protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses. Cell Rep. 2019 ; 26 : 1828–1840. [CrossRef] [Google Scholar]
  12. Nessar R, Cambau E, Reyrat JM, et al. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012 ; 67 : 810–818. [CrossRef] [PubMed] [Google Scholar]
  13. Yam YK, Alvarez N, Go ML, et al. Extreme drug tolerance of Mycobacterium abscessus persisters. Front Microbiol 2020; 11 : 359. [CrossRef] [PubMed] [Google Scholar]
  14. Haworth CS, Banks J, Capstick T, et al. British thoracic society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017; 72 : ii1-64. [CrossRef] [PubMed] [Google Scholar]
  15. Lavollay M, Fourgeaud M, Herrmann JL, et al. The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L. D-transpeptidases. J Bacteriol 2011 ; 193 : 778–782. [CrossRef] [PubMed] [Google Scholar]
  16. Dubée V, Triboulet S, Mainardi JL, et al. Inactivation of Mycobacterium tuberculosis L, D-transpeptidase LdtMt1 by carbapenems and cephalosporins. Antimicrob Agents Chemother 2012 ; 56 : 4189–4195. [CrossRef] [PubMed] [Google Scholar]
  17. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014 ; 12 : 35–48. [CrossRef] [PubMed] [Google Scholar]
  18. Nash KA, Brown-Elliott BA, Wallace RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009 ; 53 : 1367–1376. [CrossRef] [PubMed] [Google Scholar]
  19. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 2000 ; 44 : 3249–3256. [CrossRef] [PubMed] [Google Scholar]
  20. Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001 ; 65 : 232–260. [CrossRef] [PubMed] [Google Scholar]
  21. Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, et al. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Antimicrob Agents Chemother 2015 ; 59 : 2849–2854. [CrossRef] [PubMed] [Google Scholar]
  22. Kremer L, Besra G, Brennan P, et al. Le lipoarabinomannane : structure et fonctions d’un glycolipide impliqué dans la pathogénie tuberculeuse. Med Sci 1999 ; 15 : 842–850. [Google Scholar]
  23. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995 ; 4 : 29–63. [CrossRef] [PubMed] [Google Scholar]
  24. Viljoen A, Dubois V, Girard-Misguich F, et al. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments: MmpL structure and diversity in mycobacteria. Mol Microbiol 2017 ; 104 : 889–904. [CrossRef] [PubMed] [Google Scholar]
  25. Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01316–e01318. [CrossRef] [PubMed] [Google Scholar]
  26. Ye M, Xu L, Zou Y, et al. Molecular analysis of linezolid-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother 2018 ; 63 : e01842–e01818. [Google Scholar]
  27. Halloum I, Viljoen A, Khanna V, et al. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384. Antimicrob Agents Chemother 2017 ; 61 : e02509–e02516. [CrossRef] [PubMed] [Google Scholar]
  28. Vianna JS, Ramis IB, Bierhals D, et al. Tetrahydropyridine derivative as efflux inhibitor in Mycobacterium abscessus. J Glob Antimicrob Resist 2019 ; 17 : 296–299. [CrossRef] [PubMed] [Google Scholar]
  29. Soroka D, Dubee V, Soulier-Escrihuela O, et al. Characterization of broad-spectrum Mycobacterium abscessus class A-blactamase. J Antimicrob Chemother 2014 ; 69 : 691–696. [CrossRef] [PubMed] [Google Scholar]
  30. Dubee V, Bernut A, Cortes M, et al. b-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother 2015 ; 70 : 1051–1058. [CrossRef] [PubMed] [Google Scholar]
  31. Rominski A, Selchow P, Becker K, et al. Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. J Antimicrob Chemother 2017 ; 72 : 2191–2200. [CrossRef] [PubMed] [Google Scholar]
  32. Ung KL, Alsarraf HMAB, Olieric V, et al. Crystal structure of the aminoglycosides N-acetyltransferase Eis2 from Mycobacterium abscessus. FEBS J 2019 ; 286 : 4342–4355. [CrossRef] [PubMed] [Google Scholar]
  33. Dal Molin M, Gut M, Rominski A, et al. Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2017; 62 : e01427–17. [PubMed] [Google Scholar]
  34. Rudra P, Hurst-Hess K, Lappierre P, et al. High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase. Antimicrob Agents Chemother 2018 ; 62 : e00119–e00118. [CrossRef] [PubMed] [Google Scholar]
  35. Rominski A, Roditscheff A, Selchow P, et al. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2017 ; 72 : 376–384. [CrossRef] [PubMed] [Google Scholar]
  36. Combrink KD, Ramos AR, Spring S, et al. Rifamycin derivatives active against pathogenic rapidly-growing mycobacteria. Bioorg Med Chem Lett 2019 ; 29 : 2112–2115. [CrossRef] [PubMed] [Google Scholar]
  37. Bastian S, Veziris N, Roux A-L, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm (41) and rrl sequencing. Antimicrob Agents Chemother 2011 ; 55 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  38. Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64 : e01879–19. [PubMed] [Google Scholar]
  39. Wallace RJ, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996 ; 40 : 1676–1681. [CrossRef] [PubMed] [Google Scholar]
  40. Nessar R, Reyrat JM, Murray A, et al. Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus. J Antimicrob Chemother 2011 ; 66 : 1719–1724. [CrossRef] [PubMed] [Google Scholar]
  41. Kim SY, Kim DH, Moon SM, et al. Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium complex and Mycobacterium abscessus clinical isolates. Sci Rep 2021; 11 : 6108. [CrossRef] [PubMed] [Google Scholar]
  42. Bernut A, Lutfalla G, Kremer L. Regard à travers le danio pour mieux comprendre les interactions hôte/pathogène. Med Sci (Paris) 2015 ; 31 : 638–646. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Johansen MD, Daher W, Roquet-Banères F, et al. Rifabutin is bactericidal against intracellular and extracellular forms of Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64 : e00363–20. [CrossRef] [PubMed] [Google Scholar]
  44. Dick T, Shin SJ, Koh WJ et al. Rifabutin is active against Mycobacterium abscessus in mice. Antimicrob Agents Chemother 2019 ; 64 : e01943–e01919. [Google Scholar]
  45. Philley JV, Wallace RJ, Benwill JL, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 2015 ; 148 : 499–506. [CrossRef] [PubMed] [Google Scholar]
  46. Dupont C, Viljoen A, Thomas S, et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish. Antimicrob Agents Chemother 2017 ; 61 : e01225–e01217. [PubMed] [Google Scholar]
  47. Le Run E, Arthur M, Mainardi J-L. In vitro and intracellular activity of imipenem combined with tedizolid, rifabutin, and avibactam against Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01915–e01918. [CrossRef] [PubMed] [Google Scholar]
  48. Dupont C, Viljoen A, Dubar F, et al. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus: Inhibiting mycolic acid transport in M. abscessus. Mol Microbiol 2016 ; 101 : 515–529. [CrossRef] [PubMed] [Google Scholar]
  49. Raynaud C, Kremer L. Vers un nouvel espoir pour traiter les infections persistantes à Mycobacterium abscessus ? Med Sci (Paris) 2020; 36 : 691–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Wu ML, Aziz DB, Dartois V, et al. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018 ; 23 : 1502–1519. [CrossRef] [PubMed] [Google Scholar]
  51. Jordan B. Cent ans après, le retour de la phagothérapie ?. Med Sci (Paris) 2019 ; 35 : 806–809. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019 ; 25 : 730–733. [CrossRef] [PubMed] [Google Scholar]
  53. Dubée V, Soroka D, Cortes M, et al. Impact of β-lactamase inhibition on the activity of ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob. Agents Chemother 2015 ; 59 : 2938–2941. [CrossRef] [PubMed] [Google Scholar]
  54. Richard M, Gutiérrez AV, Viljoen AJ, et al. Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus. Front Microbiol 2018 ; 9 : 649. [CrossRef] [PubMed] [Google Scholar]
  55. Gutiérrez AV, Richard M, Roquet-Banères F, et al. The TetR family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019 ; 63 : e01000–e01019. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.