Open Access
Issue
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Page(s) 851 - 862
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021144
Published online 14 October 2021
  1. Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 2008 ; 31 : 125–150. [CrossRef] [PubMed] [Google Scholar]
  2. Lopez C. The vestibular system: balancing more than just the body. Curr Opin Neurol 2016 ; 29 : 74–83. [CrossRef] [PubMed] [Google Scholar]
  3. Balaban CD. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Curr Opin Neurol 1999 ; 12 : 29–33. [CrossRef] [PubMed] [Google Scholar]
  4. MacKinnon CD. Chapter 1 – Sensorimotor anatomy of gait, balance, and falls. In: Day BL, Lord SR (eds). Handbook of clinical neurology. Balance, gait, and falls. Amsterdam : Elsevier, 2018 : 3–26. [Google Scholar]
  5. Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 2012 ; 35 : 185–196. [CrossRef] [PubMed] [Google Scholar]
  6. Strupp M, Arbusow V. Acute vestibulopathy. Curr Opin Neurol 2001 ; 14 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  7. Eckhardt-Henn A, Best C, Bense Set al. Psychiatric comorbidity in different organic vertigo syndromes. J Neurol 2008 ; 255 : 420–428. [CrossRef] [PubMed] [Google Scholar]
  8. Balaban CD. Neural substrates linking balance control and anxiety. Physiol Behav 2002 ; 77 : 469–475. [CrossRef] [PubMed] [Google Scholar]
  9. Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist’s best friend. J Neurol 2016; 263 : 54–64. [Google Scholar]
  10. Dieringer N. Vestibular compensation: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 1995 ; 46 : 97–129. [PubMed] [Google Scholar]
  11. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: recent advances. Prog Neurobiol 2000 ; 62 : 313–325. [CrossRef] [PubMed] [Google Scholar]
  12. Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 1989 ; 14 : 155–180. [CrossRef] [PubMed] [Google Scholar]
  13. Darlington CL, Dutia MB, Smith PF. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage: recovery from vestibular damage: role of vestibular nucleus. Eur J Neurosci 2002 ; 15 : 1719–1727. [CrossRef] [PubMed] [Google Scholar]
  14. Lacour M, Tighilet B. Plastic events in the vestibular nuclei during vestibular compensation: The brain orchestration of a deafferentation code. Restor Neurol Neurosci 2010 ; 28 : 19–35. [PubMed] [Google Scholar]
  15. Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog Neurobiol 2019 ; 174 : 28–35. [CrossRef] [PubMed] [Google Scholar]
  16. Dutheil S, Brezun JM, Leonard Jet al. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience 2009 ; 164 : 1444–1456. [Google Scholar]
  17. Rastoldo G, El Mahmoudi N, Marouane E, et al. Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy. Prog Neurobiol 2021; 196 : 101899. [CrossRef] [PubMed] [Google Scholar]
  18. Dutheil S, Watabe I, Sadlaoud Ket al. BDNF signaling promotes vestibular compensation by increasing neurogenesis and remodeling the expression of potassium-chloride cotransporter KCC2 and GABAA receptor in the vestibular nuclei. J Neurosci 2016 ; 36 : 6199–6212. [CrossRef] [PubMed] [Google Scholar]
  19. Tighilet B, Leonard J, Mourre Cet al. Apamin treatment accelerates equilibrium recovery and gaze stabilization in unilateral vestibular neurectomized cats: cellular and behavioral aspects. Neuropharmacology 2019 ; 144 : 133–142. [CrossRef] [PubMed] [Google Scholar]
  20. Curthoys IS. Vestibular compensation and substitution. Curr Opin Neurol 2000 ; 13 : 27. [CrossRef] [PubMed] [Google Scholar]
  21. Oie KS, Kiemel T, Jeka JJ. Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Cogn Brain Res 2002 ; 14 : 164–176. [Google Scholar]
  22. Tjernström F, Fransson PA, Kahlon B, et al. Different visual weighting due to fast or slow vestibular deafferentation: before and after Schwannoma surgery. Neural Plast 2019 ; 2019 : 1–11. [Google Scholar]
  23. Dani SU, Hori A, Walter GFPrinciples of neural aging. Amstedam: Elsevier Science BV, 1997. [Google Scholar]
  24. Mozolic JL, Hugenschmidt CE, Peiffer AM, et al. Multisensory integration and aging. Boca Raton (FL): CRC Press/Taylor and Francis, 2012. [Google Scholar]
  25. Larsson L, Degens H, Li M, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019 ; 99 : 427–511. [CrossRef] [PubMed] [Google Scholar]
  26. Alvarez JC, Díaz C, Suárez C, et al. Neuronal loss in human medial vestibular nucleus. Anat Rec 1998 ; 251 : 431–438. [CrossRef] [PubMed] [Google Scholar]
  27. Alvarez JC, Díaz C, Suárez C, et al. Aging and the human vestibular nuclei: morphometric analysis. Mech Ageing Dev 2000 ; 114 : 149–172. [CrossRef] [PubMed] [Google Scholar]
  28. Lopez I, Honrubia V, Baloh RW. Aging and the human vestibular nucleus. J Vestib Res Equilib Orientat 1997 ; 7 : 77–85. [Google Scholar]
  29. Tang Y, Lopez I, Baloh RW. Age-related change of the neuronal number in the human medial vestibular nucleus: a stereological investigation. J Vestib Res Equilib Orientat 2001 ; 11 : 357–363. [Google Scholar]
  30. Sturrock RR. Age related changes in neuron number in the mouse lateral vestibular nucleus. J Anat 1989 ; 166 : 227–232. [PubMed] [Google Scholar]
  31. Fernández JA, Suárez C, Navarro A, et al. Aging in the vestibular nuclear complex of the male golden hamster (Mesocricetus auratus): anatomic and morphometric study. Histol Histopathol 2007 ; 22 : 855–868. [PubMed] [Google Scholar]
  32. Andersen BB, Gundersen HJG, Pakkenberg B. Aging of the human cerebellum: a stereological study. J Comp Neurol 2003 ; 466 : 356–365. [CrossRef] [PubMed] [Google Scholar]
  33. Buchman AS, Leurgans SE, VanderHorst VGJM, et al. spinal motor neurons and motor function in older adults. J Neurol 2019 ; 266 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  34. Johnson JE, Miquel J. Fine structural changes in the lateral vestibular nucleus of aging rats. Mech Ageing Dev 1974 ; 3 : 203–224. [CrossRef] [PubMed] [Google Scholar]
  35. Takeuchi YK, Takeuchi IK, Murashima Y, et al. Age-related appearance of dystrophic axon terminals in cerebellar and vestibular nuclei of Mongolian gerbils. Exp Anim 1997 ; 46 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  36. Him A, Guneser R, Cengiz N, et al. Glutamate responsiveness of medial vestibular nucleus neurons in aged rats. Brain Res Bull 2010 ; 81 : 81–84. [CrossRef] [PubMed] [Google Scholar]
  37. Liu P, Zhang H, Devaraj R, et al. A multivariate analysis of the effects of aging on glutamate, GABA and arginine metabolites in the rat vestibular nucleus. Hear Res 2010 ; 269 : 122–133. [CrossRef] [PubMed] [Google Scholar]
  38. Liu P, Gupta N, Jing Y, et al. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum. Neuroscience 2017 ; 348 : 273–287. [CrossRef] [PubMed] [Google Scholar]
  39. Him A, Johnston AR, Yau JL, et al. Tonic activity and GABA responsiveness of medial vestibular nucleus neurons in aged rats. Neuroreport 2001 ; 12 : 3965–3968. [CrossRef] [PubMed] [Google Scholar]
  40. Giardino L, Zanni M, Fernandez M, et al. Plasticity of GABA(a) system during ageing: focus on vestibular compensation and possible pharmacological intervention. Brain Res 2002 ; 929 : 76–86. [CrossRef] [PubMed] [Google Scholar]
  41. Nakayama M, Caspary DM, Konrad HR, et al. Age-related changes in [3H]strychnine binding in the vestibular nuclei of rats. Hear Res 1999 ; 127 : 103–107. [CrossRef] [PubMed] [Google Scholar]
  42. Godfrey DA, Chen K, O’Toole TR, et al. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 2017 ; 350 : 173–188. [CrossRef] [PubMed] [Google Scholar]
  43. Cransac H, Peyrin L, Cottet-Emard JM, et al. Aging effects on monoamines in rat medial vestibular and cochlear nuclei. Hear Res 1996 ; 100 : 150–156. [CrossRef] [PubMed] [Google Scholar]
  44. Di Mauro M, Bronzi D, Li Volsi G, et al. Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience 2008 ; 153 : 1320–1331. [CrossRef] [PubMed] [Google Scholar]
  45. Bernal GM, Peterson DA. Neural stem cells as therapeutic agents for age-related brain repair. Aging Cell 2004 ; 3 : 345–351. [CrossRef] [PubMed] [Google Scholar]
  46. Enwere E, Shingo T, Gregg C, et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004 ; 24 : 8354–8365. [CrossRef] [PubMed] [Google Scholar]
  47. Toni N, Laplagne DA, Zhao C, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 2008 ; 11 : 901–907. [CrossRef] [PubMed] [Google Scholar]
  48. Jacob A, Tward DJ, Resnick S, et al. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon 2020; 6. [Google Scholar]
  49. Brawek B, Skok M, Garaschuk O. Changing functional signatures of microglia along the axis of brain aging. Int J Mol Sci 2021; 22. [Google Scholar]
  50. Palmer AL, Ousman SSAstrocytes and aging. Front Aging Neurosci 2018 ; 10. [Google Scholar]
  51. Mercado N, Collier T, Sortwell C, et al. BDNF in the aged brain: translational implications for parkinson’s disease. Austin Neurol Neurosci 2017; 2. [Google Scholar]
  52. Lima Giacobbo B, Doorduin J, Klein HC, et al. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 2019; 56 : 3295–312. [CrossRef] [PubMed] [Google Scholar]
  53. Dunn AR, Kaczorowski CC. Regulation of intrinsic excitability: roles for learning and memory, aging and Alzheimer’s disease, and genetic diversity. Neurobiol Learn Mem 2019 ; 164 : 107069. [CrossRef] [PubMed] [Google Scholar]
  54. Cassel R, Wiener-Vacher S, El Ahmadi A, et al. Reduced balance restoration capacities following unilateral vestibular insult in elderly mice. Front Neurol 2018; 9. [PubMed] [Google Scholar]
  55. Scheltinga A, Honegger F, Timmermans DPH, et al. The effect of age on improvements in vestibulo-ocular reflexes and balance control after acute unilateral peripheral vestibular loss. Front Neurol 2016; 7. [PubMed] [Google Scholar]
  56. Xerri C, Lacour M. Compensation deficits in posture and kinetics following unilateral vestibular neurectomy in cats. The role of sensorimotor activity. Acta Otolaryngol (Stockh) 1980; 90 : 414–24. [Google Scholar]
  57. Lacour M, Roll JP, Appaix M. Modifications and development of spinal reflexes in the alert baboon (Papio papio) following an unilateral vestibular neurotomy. Brain Res 1976 ; 113 : 255–269. [CrossRef] [PubMed] [Google Scholar]
  58. Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in the hippocampus. Science 2006 ; 313 : 1093–1097. [Google Scholar]
  59. Racine RJ, Wilson DA, Gingell R, et al. Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp Brain Res 1986 ; 63 : 158–162. [CrossRef] [PubMed] [Google Scholar]
  60. Pettorossi VE, Dieni CV, Scarduzio M, et al. Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei. Neuroscience 2011 ; 187 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  61. Pettorossi VE, Dutia M, Frondaroli A, et al. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats. Acta Otolaryngol (Stockh) 2003 ; 123 : 182–186. [Google Scholar]
  62. Smith PF. Vestibular-hippocampal interactions. Hippocampus 1997 ; 7 : 465–471. [Google Scholar]
  63. Rastoldo G, Marouane E, El Mahmoudi N, et al. Quantitative evaluation of a new posturo-locomotor phenotype in a rodent model of acute unilateral vestibulopathy. Front Neurol 2020; 11. [PubMed] [Google Scholar]
  64. Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 1994 ; 368 : 147–150. [CrossRef] [PubMed] [Google Scholar]
  65. Maingay MG, Sansom AJ, Kerr DR, et al. The effects of intra-vestibular nucleus administration of brain-derived neurotrophic factor (BDNF) on recovery from peripheral vestibular damage in guinea pig. Neuroreport 2000 ; 11 : 2429–2432. [CrossRef] [PubMed] [Google Scholar]
  66. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 2012 ; 18 : 82–97. [Google Scholar]
  67. Manchishi SM, Cui RJ, Zou XH, et al. Effect of caloric restriction on depression. J Cell Mol Med 2018 ; 22 : 2528–2535. [CrossRef] [PubMed] [Google Scholar]
  68. Venditti S, Verdone L, Reale A, et al. Molecules of silence: effects of meditation on gene expression and epigenetics. Front Psychol 2020; 11. [PubMed] [Google Scholar]
  69. Soto E, Vega R. Neuropharmacology of vestibular system disorders. Curr Neuropharmacol 2010 ; 8 : 26–40. [CrossRef] [PubMed] [Google Scholar]
  70. Tighilet B, Rastoldo G, Chabbert C. Le cerveau adulte produit de nouveaux neurones pour restaurer l’équilibre après une perte vestibulaire. Med Sci (Paris) 2020; 36 : 581–91. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.