Open Access
Issue
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Page(s) 863 - 872
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021145
Published online 14 October 2021
  1. Wu J, Greely HT, Jaenisch R, et al. Stem cells and interspecies chimaeras. Nature 2016 ; 540 : 51–59. [Google Scholar]
  2. Rashid T, Kobayashi T, Nakauchi HRevisiting the flight of icarus: making human organs from pscs with large animal chimeras. Cell Stem Cell 2014 ; 15 : 406–409. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. Masaki H, Nakauchi HInterspecies chimeras for human stem cell research. Development 2017 ; 144 : 2544–2547. [CrossRef] [PubMed] [Google Scholar]
  4. Levine S, Grabel LThe contribution of human/non-human animal chimeras to stem cell research. Stem Cell Res 2017 ; 24 : 128–134. [CrossRef] [PubMed] [Google Scholar]
  5. Suchy F, Nakauchi HInterspecies chimeras. Curr Opin Genet Dev 2018 ; 52 : 36–41. [Google Scholar]
  6. De Los Angeles A. The pluripotency continuum and interspecies chimeras. Curr Protoc Stem Cell Biol 2019 : e87. [PubMed] [Google Scholar]
  7. Wu J, Platero-Luengo A, Sakurai M, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 2017 ; 168 : 473–86e15. [Google Scholar]
  8. Kobayashi T, Yamaguchi T, Hamanaka S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 2010 ; 142 : 787–799. [CrossRef] [PubMed] [Google Scholar]
  9. Yamaguchi T, Sato H, Kato-Itoh M, et al. Interspecies organogenesis generates autologous functional islets. Nature 2017 ; 542 : 191–196. [CrossRef] [PubMed] [Google Scholar]
  10. Kobayashi T, Goto T, Oikawa M, et al. Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun 2021; 12 : 1328. [CrossRef] [PubMed] [Google Scholar]
  11. Afanassieff M, Aksoy I, Beaujean N, et al. Cinquante nuances de pluripotence. Med Sci (Paris) 2018 ; 34 : 944–953. [Google Scholar]
  12. Savatier P, Osteil P, Tam PP. Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff. Stem Cell Res 2017; 19 : 104–12. [CrossRef] [PubMed] [Google Scholar]
  13. Chen H, Aksoy I, Gonnot F, et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 2015 ; 6 : 7095. [CrossRef] [PubMed] [Google Scholar]
  14. Manor YS, Massarwa R, Hanna JHEstablishing the human naive pluripotent state. Curr Opin Genet Dev 2015 ; 34 : 35–45. [CrossRef] [PubMed] [Google Scholar]
  15. Weinberger L, Ayyash M, Novershtern N, Hanna JHDynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016 ; 17 : 155–169. [CrossRef] [PubMed] [Google Scholar]
  16. Warrier S, Van der Jeught M, Duggal G, et al. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat Commun 2017 ; 8 : 15055. [CrossRef] [PubMed] [Google Scholar]
  17. Collier AJ, Rugg-Gunn PJ. Identifying human naive pluripotent stem cells – evaluating state-specific reporter lines and cell-surface markers. Bioessays 2018 : e1700239. [CrossRef] [PubMed] [Google Scholar]
  18. Hu Z, Li H, Jiang H, et al. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Sci Adv 2020; 6 : eaaz0298. [CrossRef] [PubMed] [Google Scholar]
  19. Zyzynska-Galenska K, Bernat A, Piliszek A, et al. Embryonic environmental niche reprograms somatic cells to express pluripotency markers and participate in adult chimaeras. Cells 2021; 10 : 490. [CrossRef] [PubMed] [Google Scholar]
  20. Aksoy I, Rognard C, Moulin A, et al. Apoptosis, G1 phase stall, and premature differentiation account for low chimeric competence of human and rhesus monkey naive pluripotent stem cells. Stem cell reports 2021; 16 : 56–74. [CrossRef] [PubMed] [Google Scholar]
  21. Wu CI, Li WHEvidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 1985 ; 82 : 1741–1745. [Google Scholar]
  22. Tan T, Wu J, Si C, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 2021; 184 : 2020–32.e14. [Google Scholar]
  23. Masaki H, Kato-Itoh M, Takahashi Y, et al. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell 2016 ; 19 : 587–592. [CrossRef] [PubMed] [Google Scholar]
  24. Das S, Koyano-Nakagawa N, Gafni O, et al. Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol 2020; 38 : 297–302. [CrossRef] [PubMed] [Google Scholar]
  25. Amoyel M, Bach EACell competition: how to eliminate your neighbours. Development 2014 ; 141 : 988–1000. [CrossRef] [PubMed] [Google Scholar]
  26. Wu JIzpisua Belmonte JC. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 2015 ; 17 : 509–525. [CrossRef] [PubMed] [Google Scholar]
  27. Diaz-Diaz C, Fernandez de Manuel L, Jimenez-Carretero D, et al. Pluripotency surveillance by myc-driven competitive elimination of differentiating cells. Dev Cell 2017 ; 42 : 585–599. [CrossRef] [PubMed] [Google Scholar]
  28. Hashimoto M, Sasaki H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev Cell 2019; 50 : 139–54e5. [CrossRef] [PubMed] [Google Scholar]
  29. Wang Z, Jaenisch RAt most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 2004 ; 275 : 192–201. [CrossRef] [PubMed] [Google Scholar]
  30. Zheng C, Hu Y, Sakurai M, et al. Cell competition constitutes a barrier for interspecies chimerism. Nature 2021. 592 : 272–6. [CrossRef] [PubMed] [Google Scholar]
  31. Bowling S, Di Gregorio A, Sancho M, et al. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun 2018 ; 9 : 1763. [CrossRef] [PubMed] [Google Scholar]
  32. Maeng G, Das S, Greising SM, et al. Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos. Nat Biomed Eng 2021; 5 : 805–14. [CrossRef] [PubMed] [Google Scholar]
  33. Mizuno H, Akutsu H, Kato KEthical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese expert panel on bioethics. Life Sci Soc Policy 2015 ; 11 : 15. [CrossRef] [PubMed] [Google Scholar]
  34. Hyun I.From naive pluripotency to chimeras: a new ethical challenge?. Development 2015 ; 142 : 6–8. [CrossRef] [PubMed] [Google Scholar]
  35. Bourret R, Martinez E, Vialla F, et al. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs. Stem Cell Res Ther 2016 ; 7 : 87. [CrossRef] [PubMed] [Google Scholar]
  36. Koplin JJ, Savulescu JTime to rethink the law on part-human chimeras. J Law Biosci 2019 ; 6 : 37–50. [CrossRef] [PubMed] [Google Scholar]
  37. Crane AT, Voth JP, Shen FX, Low WCConcise review: human-animal neurological chimeras: humanized animals or human cells in an animal?. Stem Cells 2019 ; 37 : 444–452. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.