Organoïdes
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Organoïdes
Page(s) 902 - 909
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021119
Published online 14 October 2021
  1. Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010 ; 51 : 297–305. [CrossRef] [PubMed] [Google Scholar]
  2. Chen X, Zeng FDirected hepatic differentiation from embryonic stem cells. Protein Cell 2011 ; 2 : 180–188. [CrossRef] [PubMed] [Google Scholar]
  3. Baxter M, Withey S, Harrison S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 2015 ; 62 : 581–589. [CrossRef] [PubMed] [Google Scholar]
  4. Harris M.The compatibility of rat and mouse cells in mixed tissue cultures. Anat Rec 1943 ; 87 : 107–117. [Google Scholar]
  5. Steinberg MSReconstruction of tissues by dissociated cells. Some morphogenetic tissue movement and the sorting out of embryonic cells may have a common explanation. Science 1963 ; 141 : 401–408. [CrossRef] [PubMed] [Google Scholar]
  6. Prior N, Inacio P, Huch MLiver organoids: from basic research to therapeutic applications. Gut 2019 ; 68 : 2228–2237. [CrossRef] [PubMed] [Google Scholar]
  7. Ardalani H, Sengupta S, Harms V, et al. 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomaterialia 2019 ; 95 : 371–381. [CrossRef] [PubMed] [Google Scholar]
  8. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013 ; 499 : 481–484. [Google Scholar]
  9. Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep 2017 ; 21 : 2661–2670. [CrossRef] [PubMed] [Google Scholar]
  10. Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, et al. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci 2020; 27 : 67. [CrossRef] [PubMed] [Google Scholar]
  11. Freyer N, Greuel S, Knöspel F, et al. Effects of co-culture media on hepatic differentiation of hipsc with or without HUVEC co-culture. IJMS 2017 ; 18 : 1724. [Google Scholar]
  12. Hafiz EOA, Bulutoglu B, Mansy SS, et al. Development of liver microtissues with functional biliary ductular network. Biotechnol Bioeng 2021; 118 : 17–29. [CrossRef] [PubMed] [Google Scholar]
  13. Dianat N, Dubois-Pot-Schneider H, Steichen C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014 ; 60 : 700–714. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. Ouchi R, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 2019 ; 30 : 374–84.e6. [CrossRef] [PubMed] [Google Scholar]
  15. Nie YZ, Zheng YW, Miyakawa K, et al. Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells. EBio Med 2018 ; 35 : 114–123. [Google Scholar]
  16. Saheli M, Sepantafar M, Pournasr B, et al. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J Cell Biochem 2018 ; 119 : 4320–4333. [CrossRef] [PubMed] [Google Scholar]
  17. Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep 2017 ; 21 : 2661–2670. [CrossRef] [PubMed] [Google Scholar]
  18. Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371 : 839–46. [CrossRef] [PubMed] [Google Scholar]
  19. Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015 ; 160 : 299–312. [CrossRef] [PubMed] [Google Scholar]
  20. Guan Y, Xu D, Garfin PM, et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2017 ; 2 : e94954. [Google Scholar]
  21. Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med 2017 ; 23 : 1424–1435. [CrossRef] [PubMed] [Google Scholar]
  22. Saltsman JA, Hammond WJ, Narayan NJC, et al. A human organoid model of aggressive hepatoblastoma for disease modeling and drug testing. Cancers 2020; 12 : 2668. [Google Scholar]
  23. Gurevich I, Burton SA, Munn C, et al. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open 2020; 9 : bio055087. [CrossRef] [PubMed] [Google Scholar]
  24. Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the human body on microfluidic chips. Trends Biotechnol 2021; 39 : 838–52. [CrossRef] [PubMed] [Google Scholar]
  25. Hughes RD, Mitry RR, Dhawan ACurrent status of hepatocyte transplantation. Transplantation 2012 ; 93 : 342–347. [CrossRef] [PubMed] [Google Scholar]
  26. Yamashita T, Takayama K, Sakurai F, et al. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells. Biochem Biophys Res Commun 2018 ; 496 : 1269–1275. [CrossRef] [PubMed] [Google Scholar]
  27. Blackford SJI, Ng SS, Segal JM, et al. Validation of current good manufacturing practice compliant human pluripotent stem cell-derived hepatocytes for cell-based therapy: validation of cGMP hPSCs for liver therapy. Stem Cells Transl Med 2019 ; 8 : 124–137. [CrossRef] [PubMed] [Google Scholar]
  28. Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011 ; 8 : 106–118. [CrossRef] [PubMed] [Google Scholar]
  29. Wang S, Wang X, Tan Z, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 2019 ; 29 : 1009–1026. [CrossRef] [PubMed] [Google Scholar]
  30. de Almeida PE, Meyer EH, Kooreman NG, et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 2014 ; 5 : 3903. [CrossRef] [PubMed] [Google Scholar]
  31. Liu X, Li W, Fu X, et al. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol 2017 ; 8 : 645. [CrossRef] [PubMed] [Google Scholar]
  32. Sugita S, Mandai M, Hirami Y, et al. HLA-matched allogeneic ips cells-derived rpe transplantation for macular degeneration. J Clin Med 2020; 9 : 2217. [Google Scholar]
  33. Organoids and spheroids market by type (organoids and spheroids), application (personalized medicine, developmental biology, drug toxicity and efficacy testing, disease pathology testing and regenerative medicine), end-use, region, global industry analysis, market size, share, growth, trends, and forecast 2020 to 2027. fiormarkets 2020. https://www.fiormarkets.com/report/organoids-and-spheroids-market-by-type-organoids-and-418832.html. [Google Scholar]
  34. Mikulic M. Total global pharmaceutical R&D spending 2012–2026. 2020. https://www.statista.com/statistics/309457/world-pharmaceutical-revenue-distribution-by-technology/. [Google Scholar]
  35. Goldman Sachs. Equity research - resolving big pharma’s big challenges - Japan’s biotech potential. 2016. https://marquee.gs.com/content/research/en/reports/2016/09/22/37177d4d-d2f1-41e0-bc37-a6d413f5f2e0.pdf. [Google Scholar]
  36. Hackam DG, Redelmeier DATranslation of research evidence from animals to humans. JAMA 2006 ; 296 : 1727. [Google Scholar]
  37. DiMasi JA, Grabowski HG, Hansen RWInnovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econom 2016 ; 47 : 20–33. [Google Scholar]
  38. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018 ; 359 : 920–926. [CrossRef] [PubMed] [Google Scholar]
  39. Zhou T, Tan L, Cederquist GY, et al. High-content screening in hpsc-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 2017 ; 21 : 274–283.e5. [CrossRef] [PubMed] [Google Scholar]
  40. Dossena M, Piras R, Cherubini A, et al. Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Res Ther 2020; 11 : 94. [CrossRef] [PubMed] [Google Scholar]
  41. Nessi E. EPFL researchers pioneer new approach to personalized medicine, 2020. https://www.s-ge.com/es/node/94843. [Google Scholar]
  42. Guidelines for stem cell research and clinical translation, International society for stem cell research, 2016. https://www.isscr.org/docs/default-source/all-isscr-guidelines/guidelines-2016/isscr-guidelines-for-stem-cell-research-and-clinical-translationd67119731dff6ddbb37cff0000940c19.pdf?sfvrsn=e31478c5_4. [Google Scholar]
  43. Chneiweiss H. Organoïdes : nouvelles perspectives et nouvelles questions éthiques. Med Sci (Paris) 2020; 36 : 99–100. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.